Supply Chain Council of European Union | Scceu.org
Procurement

Silicon as a potential limiting factor for phosphorus availability in paddy soils

  • Zhu, Y.-G., Williams, P. N. & Meharg, A. A. Exposure to inorganic arsenic from rice: A global health issue?. Environ. Pollut. 154, 169–171 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, N. Global Climate Changes and Rice Food Security (FAO, 2002).


    Google Scholar
     

  • Lan, Z., Lin, X., Wang, F., Zhang, H. & Chen, C. Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization. Biol. Fertil. Soils 48, 579–588 (2012).

    CAS 

    Google Scholar
     

  • Dobermann, A., Cassman, K., Mamaril, C. & Sheehy, J. Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crop. Res. 56, 113–138 (1998).


    Google Scholar
     

  • Kawaguchi, K. & Kyuma, K. Paddy soils in tropical Asia. Their material nature and fertility. Paddy Soils in Tropical Asia. Their material Nature and Fertility. (1977).

  • Klein, G. Problem soils as potential areas for adverse soil-tolerant varieties in South and Southeast Asia. IRRI Research Paper Series (Philippines) (1986).

  • Cheng, Y.-Q., Yang, L.-Z., Cao, Z.-H., Ci, E. & Yin, S. Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151, 31–41 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Zou, P., Fu, J. & Cao, Z. Chronosequence of paddy soils and phosphorus sorption–desorption properties. J. Soils Sediments 11, 249–259 (2011).

    CAS 

    Google Scholar
     

  • Savant, N., Snyder, G. & Datnoff, L. Silicon management and sustainable rice production. Adv. Agron. 58, 151–199 (1996).


    Google Scholar
     

  • Ma, J. F. et al. A silicon transporter in rice. Nature 440, 688–691 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Desplanques, V. et al. Silicon transfers in a rice field in Camargue (France). J. Geochem. Explor. 88, 190–193 (2006).

    CAS 

    Google Scholar
     

  • Ma, J. F. & Yamaji, N. A cooperated system of silicon transport in plants. Trends Plant Sci. 20, 435–442 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Schaller, J., Puppe, D., Kaczorek, D., Ellerbrock, R. & Sommer, M. Silicon cycling in soils revisited. Plants 10, 295 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klotzbücher, T. et al. Forms and fluxes of potential plant-available silicon in irrigated lowland rice production (Laguna, the Philippines). Plant Soil, 1–15 (2015).

  • Qin, F. et al. Study on available silicon contents in cultivated land and its influencing factors in Ningbo city. Acta Agriculturae Zhejiangensis 24, 263–267 (2012).


    Google Scholar
     

  • Yang, Y. et al. Silicon nutrition of paddy soil and rice in outskirts of Ningbo city (in Chinese). Zhejiang Agric. Sci. 5, 1605–1606 (2010).


    Google Scholar
     

  • Datnoff, L. E. & Rodrigues, F. A. Silicon and Plant Diseases 1–5 (Springer, 2015).


    Google Scholar
     

  • Hömberg, A., Obst, M., Knorr, K.-H., Kalbitz, K. & Schaller, J. Increased silicon concentration in fen peat leads to a release of iron and phosphate and changes in the composition of dissolved organic matter. Geoderma 374, 114422 (2020).

    ADS 

    Google Scholar
     

  • Schaller, J. et al. Silicon increases the phosphorus availability of Arctic soils. Sci. Rep. 9, 449 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiemstra, T. Ferrihydrite interaction with silicate and competing oxyanions: Geometry and hydrogen bonding of surface species. Geochim. Cosmochim. Acta 238, 453–476 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Kölbl, A. et al. Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma 228, 67–89 (2014).

    ADS 

    Google Scholar
     

  • Roth, P. J. et al. Accumulation of nitrogen and microbial residues during 2000 years of rice paddy and non-paddy soil development in the Yangtze River Delta, China. Glob. Change Biol. 17, 3405–3417 (2011).

    ADS 

    Google Scholar
     

  • Lehndorff, E. et al. Spatial organization of soil microaggregates. Geoderma 386, 8 (2021).


    Google Scholar
     

  • Vogel, C. et al. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat. Commun. 5, 7 (2014).


    Google Scholar
     

  • Kinyangi, J. et al. Nanoscale biogeocomplexity of the organomineral assemblage in soil: Application of STXM microscopy and C 1s-NEXAFS spectroscopy. Soil Sci. Soc. Am. J. 70, 1708–1718 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Meunier, J.-D., Sandhya, K., Prakash, N. B., Borschneck, D. & Dussouillez, P. pH as a proxy for estimating plant-available Si? A case study in rice fields in Karnataka (South India). Plant Soil 432, 143–155 (2018).

    CAS 

    Google Scholar
     

  • Schaller, J. et al. Silicon accumulation in rice plant aboveground biomass affects leaf carbon quality. Plant Soil 444, 399–407 (2019).

    CAS 

    Google Scholar
     

  • Obihara, C. & Russell, E. Specific adsorption of silicate and phosphate by soils. J. Soil Sci. 23, 105–117 (1972).

    CAS 

    Google Scholar
     

  • Reithmaier, G. M. S., Knorr, K. H., Arnhold, S., Planer-Friedrich, B. & Schaller, J. Enhanced silicon availability leads to increased methane production, nutrient and toxicant mobility in peatlands. Sci. Rep. 7, 8728 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters Vol. 126 (Wiley, 2012).


    Google Scholar
     

  • Schaller, J., Cramer, A., Carminati, A. & Zarebanadkouki, M. Biogenic amorphous silica as main driver for plant available water in soils. Sci. Rep. 10, 2424 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hömberg, A., Broder, T., Schaller, J. & Knorr, K.-H. Methane fluxes but not respiratory carbon dioxide fluxes altered under Si amendment during drying–rewetting cycles in fen peat mesocosms. Geoderma 404, 115338 (2021).

    ADS 

    Google Scholar
     

  • Hömberg, A., Knorr, K.-H. & Schaller, J. Methane production rate during anoxic litter decomposition depends on Si mass fractions, nutrient stoichiometry and carbon quality. Plants 10, 618 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauger, T. et al. Influence of organics and silica on Fe (II) oxidation rates and cell–mineral aggregate formation by the green-sulfur Fe (II)-oxidizing bacterium Chlorobium ferrooxidans KoFox–Implications for Fe (II) oxidation in ancient oceans. Earth Planet. Sci. Lett. 443, 81–89 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Maranguit, D., Guillaume, T. & Kuzyakov, Y. Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms. CATENA 158, 161–170 (2017).

    CAS 

    Google Scholar
     

  • Heiberg, L., Koch, C. B., Kjaergaard, C., Jensen, H. S. & Hansen, H. C. B. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. J. Environ. Qual. 41, 938–949 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Schaller, J., Wang, J., Islam, M. R. & Planer-Friedrich, B. Black carbon yields highest nutrient and lowest arsenic release when using rice residuals in paddy soils. Sci. Rep. 8, 17004 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meharg, C. & Meharg, A. A. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?. Environ. Exp. Bot. 120, 8–17 (2015).

    CAS 

    Google Scholar
     

  • Marxen, A. et al. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil, 153–163 (2015).

  • Puppe, D., Kaczorek, D., Schaller, J., Barkusky, D. & Sommer, M. Crop straw recycling prevents anthropogenic desilication of agricultural soil-plant systems in the temperate zone—Results from a long-term field experiment in NE Germany. Geoderma 403, 115187 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Datnoff, L. E., Deren, C. W. & Snyder, G. H. Silicon fertilization for disease management of rice in Florida. Crop Prot. 16, 525–531 (1997).

    CAS 

    Google Scholar
     

  • Fan, M. S. et al. Crop yields, internal nutrient efficiency, and changes in soil properties in rice-wheat rotations under non-flooded mulching cultivation. Plant Soil 277, 265–276 (2005).

    CAS 

    Google Scholar
     

  • Six, L., Smolders, E. & Merckx, R. The performance of DGT versus conventional soil phosphorus tests in tropical soils—Maize and rice responses to P application. Plant Soil 366, 49–66 (2013).

    CAS 

    Google Scholar
     

  • DIN-EN-13346. Bestimmung von Spurenelementen und Phosphor, Extraktionsverfahren mit Königswasser Vol. 20 (Deutsches Institut für Normung, 2001).


    Google Scholar
     

  • Pierzynski, G. M. Methods of phosphorous analysis. (2000).

  • DeMaster, D. J. The supply and accumulation of silica in the marine environment. Geochim. Cosmochim. Acta 45, 1715–1732 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • Schüller, H. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 123, 48–63 (1969).


    Google Scholar
     

  • Kaznatcheev, K. et al. Soft X-ray spectromicroscopy beamline at the CLS: Commissioning results. Nucl. Instrum. Methods Phys. Res. Sect. A 582, 96–99 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Hitchcock, A. P. aXis2000 is written in Interactive Data Language (IDL), 2021).

  • Dynes, J. J. et al. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 40, 1556–1565 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Hanhan, S., Smith, A., Obst, M. & Hitchcock, A. Optimization of analysis of soft X-ray spectromicroscopy at the Ca 2p edge. J. Electron Spectrosc. Relat. Phenom. 173, 44–49 (2009).

    CAS 

    Google Scholar
     

  • Related posts

    Potsdam DRI planning committee meets via teleconference, suspends future meetings amid COVID-19 regulations | Public Service News

    scceu

    Windmill blade recycling facility coming to Bath

    scceu

    Design and test of smashing and scattering device of double-channel feeding ratoon rice harvester

    scceu