Supply Chain Council of European Union | Scceu.org
Procurement

A typology of North Sea oil and gas platforms

  • Heery, E. C. et al. Identifying the consequences of ocean sprawl for sedimentary habitats. J. Exp. Mar. Biol. Ecol. 492, 31–48 (2017).


    Google Scholar
     

  • Bulleri, F. & Chapman, M. G. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 47, 26–35 (2010).


    Google Scholar
     

  • Angus, N. M. & Moore, R. L. Scour repair methods in the Southern North Sea. Proc. Annu. Offshore Technol. Conf. 1982, 385–389 (1982).


    Google Scholar
     

  • Andersson, M. H., Berggren, M., Wilhelmsson, D. & Öhman, M. C. Epibenthic colonization of concrete and steel pilings in a cold-temperate embayment: A field experiment. Helgoland Mar. Res. 63, 249–260 (2009).

    ADS 

    Google Scholar
     

  • Andersson, M. H. & Öhman, M. C. Fish and sessile assemblages associated with wind-turbine constructions in the Baltic Sea. Mar. Freshw. Res. 61, 642 (2010).

    CAS 

    Google Scholar
     

  • Connell, S. D. Urban structures as marine habitats: An experimental comparison of the composition and abundance of subtidal epibiota among pilings, pontoons and rocky reefs. Mar. Environ. Res. 52, 115–125 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • McDougall, K. D. Sessile Marine invertebrates of Beaufort, North Carolina: A study of settlement, growth, and seasonal fluctuations among pile-dwelling organisms. Ecol. Monogr. 13, 321–374 (1943).


    Google Scholar
     

  • Petersen, J. K. & Maim, T. Offshore windmill farms: Threats to or possibilities for the marine environment. Ambio 35, 75–80 (2006).

    PubMed 

    Google Scholar
     

  • Sedano, F., Navarro-Barranco, C., Guerra-García, J. M. & Espinosa, F. From sessile to vagile: Understanding the importance of epifauna to assess the environmental impacts of coastal defence structures. Estuar. Coast. Shelf Sci. 235, 106616 (2020).


    Google Scholar
     

  • Pastor, J., Koeck, B., Astruch, P. & Lenfant, P. Coastal man-made habitats: Potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148, 74–80 (2013).


    Google Scholar
     

  • Bouchoucha, M. et al. Potential use of marinas as nursery grounds by rocky fishes: Insights from four Diplodus species in the Mediterranean. Mar. Ecol. Progr. Ser. 547, 193–209 (2016).

    ADS 

    Google Scholar
     

  • Guidetti, P., Bussotti, S. & Boero, F. Evaluating the effects of protection on fish predators and sea urchins in shallow artificial rocky habitats: A case study in the northern Adriatic Sea. Mar. Environ. Res. 59, 333–348 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Todd, V. L. G., Warley, J. C. & Todd, I. B. Meals on wheels? A decade of megafaunal visual and acoustic observations from offshore oil & gas rigs and platforms in the North and Irish Seas. PLoS ONE 11, e0153320 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. S., Schroeder, D. M. & Lenarz, W. H. Distribution of bocaccio (Sebastes paucispinis) and cowcod (Sebastes levis) around oil platforms and natural outcrops off California with implications for larval production. Bull. Mar. Sci. 77, 397–408 (2005).


    Google Scholar
     

  • Paxton, A. B. et al. Artificial habitats host elevated densities of large reef-associated predators. PLoS ONE 15, e0237374 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedlander, A. M., Ballesteros, E., Fay, M. & Sala, E. Marine communities on oil platforms in Gabon, West Africa: High biodiversity oases in a low biodiversity environment. PLoS ONE 9, e103709 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page, H., Dugan, J., Dugan, D., Richards, J. & Hubbard, D. Effects of an offshore oil platform on the distribution and abundance of commercially important crab species. Mar. Ecol. Prog. Ser. 185, 47–57 (1999).

    ADS 

    Google Scholar
     

  • Pondella, D. J., Zahn, L. A., Love, M. S., Siegel, D. & Bernstein, B. B. Modeling fish production for southern California’s petroleum platforms. Integr. Environ. Assess. Manag. 11, 584–593 (2015).

    PubMed 

    Google Scholar
     

  • Fujii, T., Walls, A. & Horsfield, M. Is there a net benefit from offshore structures?. Soc. Pet. Eng. 1, 404–412 (2014).


    Google Scholar
     

  • Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: A synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).

    CAS 

    Google Scholar
     

  • Daigle, S. T., Fleeger, J. W., Cowan, J. H. & Pascal, P.-Y. What is the relative importance of phytoplankton and attached macroalgae and epiphytes to food webs on offshore oil platforms?. Mar. Coast. Fish. 5, 53–64 (2013).


    Google Scholar
     

  • Claisse, J. T. et al. Oil platforms off California are among the most productive marine fish habitats globally. Proc. Natl. Acad. Sci. USA 111, 15462–15467 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burt, J., Bartholomew, A., Bauman, A., Saif, A. & Sale, P. F. Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters. J. Exp. Mar. Biol. Ecol. 373, 72–78 (2009).


    Google Scholar
     

  • Claisse, J. T. et al. Impacts from partial removal of decommissioned oil and gas platforms on fish biomass and production on the remaining platform structure and surrounding shell mounds. PLoS ONE 10, e0135812 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krone, R., Gutow, L., Brey, T., Dannheim, J. & Schröder, A. Mobile demersal megafauna at artificial structures in the German Bight: Likely effects of offshore wind farm development. Estuar. Coast. Shelf Sci. 125, 1–9 (2013).

    ADS 

    Google Scholar
     

  • Bugnot, A. B. et al. Current and projected global extent of marine built structures. Nat. Sustain. 4, 33–41 (2020).


    Google Scholar
     

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 1979(319), 948–952 (2008).

    ADS 

    Google Scholar
     

  • Jones, K. R. et al. The location and protection status of earth’s diminishing marine wilderness. Curr. Biol. 28, 2506-2512.e3 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ahiaga-Dagbui, D. D., Love, P. E. D., Whyte, A. & Boateng, P. Costing and technological challenges of offshore oil and gas decommissioning in the U.K. North Sea. J. Constr. Eng. Manag. 143, 05017008 (2017).


    Google Scholar
     

  • Bull, A. S. & Love, M. S. Worldwide oil and gas platform decommissioning: A review of practices and reefing options. Ocean Coast. Manag. 168, 274–306 (2019).


    Google Scholar
     

  • Jørgensen, D. OSPAR’s exclusion of rigs-to-reefs in the North Sea. Ocean Coast. Manag. 58, 57–61 (2012).


    Google Scholar
     

  • OSPAR. “OSPAR decision 98/3 on the disposal of disused offshore installations.” Ministerial Meeting of the OSPAR Commission, OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic (1998).

  • Cordes, E. E. et al. Environmental impacts of the deep-water oil and gas industry: A review to guide management strategies. Front. Environ. Sci. 4, 58 (2016).


    Google Scholar
     

  • Fowler, A. M., Macreadie, P. I., Jones, D. O. B. & Booth, D. J. A multi-criteria decision approach to decommissioning of offshore oil and gas infrastructure. Ocean Coast. Manag. 87, 20–29 (2014).


    Google Scholar
     

  • Sommer, B. et al. Decommissioning of offshore oil and gas structures: Environmental opportunities and challenges. Sci. Total Environ. 658, 973–981 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekins, P., Vanner, R. & Firebrace, J. Decommissioning of offshore oil and gas facilities: A comparative assessment of different scenarios. J. Environ. Manage. 79, 420–438 (2006).

    PubMed 

    Google Scholar
     

  • Fowler, A. M. et al. Environmental benefits of leaving offshore infrastructure in the ocean. Front. Ecol. Environ. 16, 571–578 (2018).


    Google Scholar
     

  • OSPAR. OSPAR Inventory of Offshore Installations. (OSPAR, 2017).

  • Kaufman, L. & Rousseeuw, P. J. Finding Groups in Data (Wiley, 1990).

    MATH 

    Google Scholar
     

  • Lingelbach, K. et al. Effects of the COVID-19 pandemic on psychological well-being and mental health based on a German online survey. Front. Public Health 9, 883–895 (2021).


    Google Scholar
     

  • Punzón, A. et al. Spanish otter trawl fisheries in the Cantabrian Sea. ICES J. Mar. Sci. 67, 1604–1616 (2010).


    Google Scholar
     

  • Ramdani, M. A. & Abdullah, S. Application of partitioning around medoids cluster for analysis of stunting in 100 priority regencies in Indonesia. J. Phys. 1722, 12097 (2021).


    Google Scholar
     

  • Miller, K., Huettmann, F., Norcross, B. & Lorenz, M. Multivariate random forest models of estuarine-associated fish and invertebrate communities. Mar. Ecol. Prog. Ser. 500, 159–174 (2014).

    ADS 

    Google Scholar
     

  • Shokri, E., Razeghi, M., Raeisi Shahraki, H., Jalli, R. & Motealleh, A. The use of cluster analysis by partitioning around medoids (PAM) to examine the heterogeneity of patients with low back pain within subgroups of the treatment based classification system. J. Biomed. Phys. Eng. https://jbpe.sums.ac.ir/article_47497.html (2021).

  • Winker, H., Kerwath, S. E. & Attwood, C. G. Comparison of two approaches to standardize catch-per-unit-effort for targeting behaviour in a multispecies hand-line fishery. Fish. Res. 139, 118–131 (2013).


    Google Scholar
     

  • van de Velden, M., D’Enza, A. I. & Markos, A. Distance-based clustering of mixed data. Wiley Interdiscip. Rev. 11, e1456 (2019).

    MathSciNet 

    Google Scholar
     

  • Brasch, M. E., Peña, A. N. & Henderson, J. H. Image-based cell subpopulation identification through automated cell tracking, principal component analysis, and partitioning around medoids clustering. Med. Biol. Eng. Comput. 59, 1851–1864 (2021).

    PubMed 

    Google Scholar
     

  • Wright, P. J., Christensen, A., Régnier, T., Rindorf, A. & van Deurs, M. Integrating the scale of population processes into fisheries management, as illustrated in the sandeel, Ammodytes marinus. ICES J. Mar. Sci. 76, 1453–1463 (2019).


    Google Scholar
     

  • Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).


    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


    Google Scholar
     

  • Stachowitsch, M., Kikinger, R., Herler, J., Zolda, P. & Geutebrück, E. Offshore oil platforms and fouling communities in the southern Arabian Gulf (Abu Dhabi). Mar. Pollut. Bull. 44, 853–860 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Ajemian, M. J., Wetz, J. J., Shipley-Lozano, B. & Stunz, G. W. Rapid assessment of fish communities on submerged oil and gas platform reefs using remotely operated vehicles. Fish. Res. 167, 143–155 (2015).


    Google Scholar
     

  • Meyer-Gutbrod, E. L. et al. Fish densities associated with structural elements of oil and gas platforms in southern California. Bull. Mar. Sci. 95, 639–656 (2019).


    Google Scholar
     

  • Lewbel, G. S., Howard, R. L. & Gallaway, B. J. Zonation of dominant fouling organisms on northern Gulf of Mexico petroleum platforms. Mar. Environ. Res. 21, 199–224 (1987).


    Google Scholar
     

  • Todd, V. L. G., Lavallin, E. W. & Macreadie, P. I. Quantitative analysis of fish and invertebrate assemblage dynamics in association with a North Sea oil and gas installation complex. Mar. Environ. Res. 142, 69–79 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. S., Nishimoto, M. M., Snook, L. & Kui, L. An analysis of the sessile, structure-forming invertebrates living on California oil and gas platforms. Bull. Mar. Sci. 95, 583–596 (2019).


    Google Scholar
     

  • Reiss, H., Cunze, H., König, K., Neumann, K. & Kröncke, I. Species distribution modelling of marine benthos: A North Sea case study. Mar. Ecol. Prog. Ser. 442, 71–86 (2011).

    ADS 

    Google Scholar
     

  • Callaway, R. et al. Diversity and community structure of epibenthic invertebrates and fish in the North Sea. ICES J. Mar. Sci. 59, 1199–1214 (2002).


    Google Scholar
     

  • Related posts

    New ICMM training material to support continual improvement in the safe and transparent management of tailings

    scceu

    Boulder County Wildfire: Crisis Relief | Make a donation

    scceu

    Centrica strikes EV home charge point deal with VW Group

    scceu
    `