Supply Chain Council of European Union | Scceu.org
Supply Chain Risk

Phosphorus for Sustainable Development Goal target of doubling smallholder productivity

  • 1.

    Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).


    Google Scholar
     

  • 2.

    Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).

    CAS 

    Google Scholar
     

  • 3.

    Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    CAS 

    Google Scholar
     

  • 4.

    Syers, J. K., Johnston, A. E. & Curtin, D. Efficiency of Soil and Fertilizer Phosphorus Use FAO Fertilizer and Plant Nutrition Bulletin 18 (FAO, 2008).

  • 5.

    Sattari, S. Z., Bouwman, A. F., Giller, K. E. & Van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    CAS 

    Google Scholar
     

  • 6.

    MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl Acad. Sci. USA 108, 3086–3091 (2011).

    CAS 

    Google Scholar
     

  • 7.

    Mogollón, J. M., Beusen, A. H. W., van Grinsven, H. J. M., Westhoek, H. & Bouwman, A. F. Future agricultural phosphorus demand according to the Shared Socioeconomic Pathways. Glob. Environ. Change 50, 149–163 (2018).


    Google Scholar
     

  • 8.

    Justić, D., Rabalais, N. N. & Turner, R. E. Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 30, 41–46 (1995).


    Google Scholar
     

  • 9.

    Tiessen, H. (ed.) Phosphorus in the Global Environment: Transfers, Cycles and Management (Wiley, 1995).

  • 10.

    Koning, N. B. J. et al. Long-term global availability of food: continued abundance or new scarcity. NJAS-Wagen. J. Life Sci. 55, 229–292 (2008).


    Google Scholar
     

  • 11.

    Samir, K. C. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).


    Google Scholar
     

  • 12.

    Brady, N. C. The Nature and Properties of Soils (Macmillan, 1990).

  • 13.

    Fairhurst, T., Lefroy, R., Mutert, E. & Batjes, N. The importance, distribution and causes of phosphorus deficiency as a constraint to crop production in the tropics. Agrofor. Forum 9, 61–66 (1999).


    Google Scholar
     

  • 14.

    Sanchez, P. A. Properties and Management of Soils in the Tropics 1st edn (John Wiley & Sons, 1976).

  • 15.

    Riskin, S. H., Porder, S., Schipanski, M. E., Bennett, E. M. & Neill, C. Regional differences in phosphorus budgets in intensive soybean agriculture. BioScience 63, 49–54 (2013).


    Google Scholar
     

  • 16.

    Riskin, S. H. et al. The fate of phosphorus fertilizer in Amazon soya bean fields. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0154 (2013).

  • 17.

    Withers, P. J. A. et al. Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci. Rep. 8, 2537 (2018).


    Google Scholar
     

  • 18.

    Pavinato, P. S. et al. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci. Rep. 10, 15615 (2020).

    CAS 

    Google Scholar
     

  • 19.

    Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043 (2016).

    CAS 

    Google Scholar
     

  • 20.

    Kvakić, M. et al. Quantifying the limitation to world cereal production due to soil phosphorus status. Glob. Biogeochem. Cycles 32, 143–157 (2018).


    Google Scholar
     

  • 21.

    Licker, R. et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).


    Google Scholar
     

  • 22.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS 

    Google Scholar
     

  • 23.

    Wolf, J., Wit, C. T., Janssen, B. H. & Lathwell, D. J. Modeling long‐term crop response to fertilizer phosphorus. I. The model. Agron. J. 79, 445–451 (1987).


    Google Scholar
     

  • 24.

    Janssen, B. H., Lathwell, D. J. & Wolf, J. Modeling long‐term crop response to fertilizer phosphorus. II. Comparison with field results. Agron. J. 79, 452–458 (1987).


    Google Scholar
     

  • 25.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications (Netherlands Environmental Assessment Agency, 2014).

  • 26.

    Mogollón, J. M. et al. More efficient phosphorus use can avoid cropland expansion. Nat. Food 2, 509–518 (2021).


    Google Scholar
     

  • 27.

    FAOSTAT Database (FAO, accessed 1 March 2021); https://www.fao.org/faostat/en/#data/FBS

  • 28.

    van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).


    Google Scholar
     

  • 29.

    Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 87, 16–29 (2016).


    Google Scholar
     

  • 30.

    Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L. & Chookolingo, B. How much of the world’s food do smallholders produce? Glob. Food Sec. 17, 64–72 (2018).


    Google Scholar
     

  • 31.

    Herrero, M. et al. Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planet. Health 1, e33–e42 (2017).


    Google Scholar
     

  • 32.

    Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M. & West, P. C. Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 11, 124010 (2016).


    Google Scholar
     

  • 33.

    Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).


    Google Scholar
     

  • 34.

    Magnone, D. et al. Efficiency of phosphorus resource use in Africa as defined by soil chemistry and the impact on crop production. Energy Procedia 123, 97–104 (2017).

    CAS 

    Google Scholar
     

  • 35.

    Magnone, D. et al. Soil chemistry aspects of predicting future phosphorus requirements in sub-Saharan Africa. J. Adv. Model. Earth Syst. 11, 327–337 (2019).


    Google Scholar
     

  • 36.

    Naidoo, R. & Fisher, B. Reset Sustainable Development Goals for a pandemic world. Nature 583, 198–201 (2020).

    CAS 

    Google Scholar
     

  • 37.

    Bhattacharyya, P. et al. Effects of 42-year long-term fertilizer management on soil phosphorus availability, fractionation, adsorption–desorption isotherm and plant uptake in flooded tropical rice. Crop J. 3, 387–395 (2015).


    Google Scholar
     

  • 38.

    Zhang, H. M., Wang, B. R., Xu, M. G. & Fan, T. L. Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 19, 199–207 (2009).

    CAS 

    Google Scholar
     

  • 39.

    Rötter, R. & Van Keulen, H. Variations in yield response to fertilizer application in the tropics: II. Risks and opportunities for smallholders cultivating maize on Kenya’s arable land. Agric. Syst. 53, 69–95 (1997).


    Google Scholar
     

  • 40.

    Haefele, S. M., Wopereis, M. C. S. & Wiechmann, H. Long-term fertility experiments for irrigated rice in the West African Sahel: agronomic results. Field Crops Res. 78, 119–131 (2002).


    Google Scholar
     

  • 41.

    Erni, M. et al. Bad for the environment, good for the farmer? Urban sanitation and nutrient flows. Irrig. Drain. Syst. 24, 113–125 (2010).


    Google Scholar
     

  • 42.

    Simha, P. & Ganesapillai, M. Ecological sanitation and nutrient recovery from human urine: how far have we come? A review. Sustain. Environ. Res. 27, 107–116 (2017).

    CAS 

    Google Scholar
     

  • 43.

    van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic Pathways. J. Environ. Manag. 231, 446–456 (2019).


    Google Scholar
     

  • 44.

    Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).


    Google Scholar
     

  • 45.

    de Wit, C. T. Resource use efficiency in agriculture. Agric. Syst. 40, 125–151 (1992).


    Google Scholar
     

  • 46.

    Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 2–7 (2016).


    Google Scholar
     

  • 47.

    Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).


    Google Scholar
     

  • 48.

    Smil, V. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Environ. 25, 53–88 (2000).


    Google Scholar
     

  • 49.

    Hudson, N. Soil Conservation (Cornell Univ. Press, 1971).

  • 50.

    The Future of Food and Agriculture—Alternative Pathways to 2050 (FAO, 2018).

  • 51.

    Agricultural Policy Incentives in Sub-Saharan Africa in the Last Decade (2005–2016): Monitoring and Analysing Food and Agricultural Policies (MAFAP) Synthesis Study 2143-2 (FAO, 2018).

  • 52.

    Commodity Markets ‘Pink Sheet’ Data (World Bank, 2021); https://www.worldbank.org/en/research/commodity-markets

  • 53.

    Edixhoven, J. D., Gupta, J. & Savenije, H. H. G. Recent revisions of phosphate rock reserves and resources: a critique. Earth Syst. Dyn. 5, 491–507 (2014).


    Google Scholar
     

  • 54.

    Geissler, B., Mew, M. C. & Steiner, G. Phosphate supply security for importing countries: developments and the current situation. Sci. Total Environ. 677, 511–523 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Paarlberg, R. L. & Paarlberg, R. Food Politics: What Everyone Needs to Know (Oxford Univ. Press, 2013).

  • 56.

    McIntyre, B. D., Herren, H. R., Wakhungu, J. & Watson, R. T. (eds) Agriculture at a Crossroads: A Synthesis of the Global and Sub-global IAASTD Reports (Island Press, 2009).

  • 57.

    Zhang, J. et al. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century. Biogeosciences 14, 2055–2068 (2017).


    Google Scholar
     

  • 58.

    Yang, X., Post, W. M., Thornton, P. E. & Jain, A. The distribution of soil phosphorus for global biogeochemical modeling. Biogeosciences 10, 2525–2537 (2013).

    CAS 

    Google Scholar
     

  • 59.

    Batjes, N. Global Distribution of Soil Phosphorus Retention Potential Report no. 2011/06 (ISRIC—World Soil Information, 2011).

  • 60.

    FAO & UNESCO Soil Map of the World Vol. 1 (UNESCO, 1974).

  • 61.

    Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).

    CAS 

    Google Scholar
     

  • 62.

    Mahowald, N. et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 22, GB4026 (2008).


    Google Scholar
     

  • 63.

    Liu, Y., Villalba, G., Ayres, R. U. & Schroder, H. Global phosphorus flows and environmental impacts from a consumption perspective. J. Ind. Ecol. 12, 229–247 (2008).

    CAS 

    Google Scholar
     

  • Related posts

    the documents you’d need to file a FEMA claim » Yale Climate Connections

    scceu

    NaFAA, Partners Sign 3.5M Euros Integrated Rice-Fish Project

    scceu

    Taiwan leader meets top US official after her election win

    scceu