Supply Chain Council of European Union | Scceu.org
Distribution

Data-driven spatiotemporal assessment of the event-size distribution of the Groningen extraction-induced seismicity catalogue

  • Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R. & Davies, R. J. Global review of human-induced earthquakes. Earth Sci. Rev. 178, 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Muntendam-Bos, A. G. et al. An overview of induced seismicity in the Netherlands. Neth. J. Geosci. https://doi.org/10.1017/njg.2021.14 (2022).

    Article 

    Google Scholar
     

  • Smith, D. C. & Richards, J. M. Social license to operate: Hydraulic fracturing-related challenges facing the oil & gas industry. Oil Gas Nat. Resour. Energy J. 1(2), 81–163 (2015).


    Google Scholar
     

  • Ghofrani, H., Atkinson, G. M., Schultz, R. & Assatourians, K. Short-term hindcasts of seismic hazard in the Western Canada sedimentary basin caused by induced and natural earthquakes. Seismol. Res. Let. 90(3), 1420–1435. https://doi.org/10.1785/0220180285 (2019).

    Article 

    Google Scholar
     

  • Dong, L. & Luo, Q. Investigations and new insights on earthquake mechanics from fault slip experiments. Earth-Sci. Rev. 228, 104019. https://doi.org/10.1016/j.earscirev.2022.104019 (2022).

    Article 

    Google Scholar
     

  • Bommer, J. J. et al. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng. Geol. 83, 287–306 (2006).

    Article 

    Google Scholar
     

  • Bommer, J. J., Crowley, H. & Pinho, R. A risk-mitigation approach to the management of induced seismicity. J. Seismol. 19(2), 623–646 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Van Elk, J. et al. A probabilistic model to evaluate options for mitigating induced seismic risk. Earthq. Spectra 35(2), 537–564 (2019).

    Article 

    Google Scholar
     

  • Schultz, R., Beroza, G. C., Ellsworth, W. L. & Baker, J. Risk-informed recommendations for managing hydraulic fracturing–induced seismicity via traffic light protocols. Bull. Seismol. Soc. Am. 110, 2411–2422 (2020).

    Article 

    Google Scholar
     

  • Schultz, R., Beroza, G. C. & Ellsworth, W. L. A risk-based approach for managing hydraulic fracturing–induced seismicity. Science 372(6541), 504–507. https://doi.org/10.1126/science.abg5451 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gulia, L., Tormann, T., Wiemer, S., Hermann, M. & Seif, S. Short-term probabilistic earthquake risk assessment considering time-dependent b values. Geophys. Res. Lett. 43, 1100–1108. https://doi.org/10.1002/2015GL066686 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Muntendam-Bos, A. G., Roest, J. P. A. & De Waal, J. A. The effect of imposed production measures on gas extraction induced seismic risk. Neth. J. Geosci. 96(5), s271–s278. https://doi.org/10.1017/njg.2017.29 (2017).

    Article 

    Google Scholar
     

  • Bachmann, C. E., Wiemer, S., Goertz-Allman, B. P. & Woessner, J. Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051480 (2012).

    Article 

    Google Scholar
     

  • Hiemer, S. & Kamer, Y. Improved seismicity forecast with spatially varying magnitude distribution. Seismol. Res. Let. 87(2A), 327–336. https://doi.org/10.1785/0220150182 (2016).

    Article 

    Google Scholar
     

  • Schorlemmer, D., Wiemer, S. & Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 437, 539–542. https://doi.org/10.1038/nature04094 (2005).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Marzocchi, W., Spassiani, I., Stallone, A. & Taroni, M. How to be fooled searching for significant variations of the b-value. Geophys. J. Int. 220, 1845–1856. https://doi.org/10.1093/gji/ggz541 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Wiemer, S. & Wyss, M. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?. J. Geophys. Res. Solid Earth 102(B7), 15115–15128. https://doi.org/10.1029/97JB00726 (1997).

    Article 

    Google Scholar
     

  • Wiemer, S. & Wyss, M. Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv. Geophys. 45, 259–302 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Kamer, Y. Comment on “Systematic survey of high-resolution b-value imaging along Californian faults: Inference on asperities” by Tormann et al. J. Geophys. Res. 119(3), 2029–2054 (2014).

    Article 

    Google Scholar
     

  • Kamer, Y. & Hiemer, S. Data-driven spatial b-value estimation with applications to California seismicity: To b or not to b. J. Geophys. Res. 120(7), 2191–5214 (2015).


    Google Scholar
     

  • Kagan, Y. Y. Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 148, 520–541 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Dost, B., Ruigrok, E. & Spetzler, J. Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Neth. J. Geosci. 96(5), s235–s245. https://doi.org/10.1017/njg.2017.20 (2017).

    Article 

    Google Scholar
     

  • Holschneider, M., Zöller, G. & Hainzl, S. Estimation of the maximum possible magnitude in the framework of a doubly truncated Gutenberg-Richter model. Bull. Seismol. Soc. Am. 101(4), 1649–1659. https://doi.org/10.1785/0120100289 (2011).

    Article 

    Google Scholar
     

  • Bourne, S. J., Oates, S. J., van Elk, J. & Doornhof, D. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir. J. Geophys. Res. Solid Earth 119, 8991–9015. https://doi.org/10.1002/2014JB011663 (2014).

    ADS 
    Article 

    Google Scholar
     

  • De Jager, J. & Visser, C. Geology of the Groningen field: An overview. Neth. J. Geosci. 95(5), s3–s15. https://doi.org/10.1017/njg.2017.22 (2017).

    Article 

    Google Scholar
     

  • Candela, T. et al. Depletion-induced seismicity at the Groningen gas field: Coulomb rate-and-state models including differential compaction effect. J. Geophys. Res. Solid Earth 124, 7081–7104. https://doi.org/10.1029/2018JB016670 (2019).

    Article 

    Google Scholar
     

  • Bommer, J. J. et al. Framework for a ground-motion model for induced seismic hazard and risk analysis in the Groningen Gas Field, The Netherlands. Earthq. Spectra 33(2), 481–498. https://doi.org/10.1193/082916EQS138M (2017).

    Article 

    Google Scholar
     

  • Van der Voort, N. & Vanclay, F. Social impacts of earthquakes caused by gas extraction in the Provinceof Groningen, The Netherlands. Environ. Impact Assess. Rev. 50, 1–15. https://doi.org/10.1016/j.eiar.2014.08.008 (2014).

    Article 

    Google Scholar
     

  • Van Eck, T., Goudbeek, F., Haak, H. & Dost, B. Seismic hazard due to small-magnitude, shallow-source, induced earthquakes in The Netherlands. Eng. Geol. 87, 105–121 (2006).

    Article 

    Google Scholar
     

  • Bourne, S. J. & Oates, S. J. Extreme threshold failures within a heterogeneous elastic thin-sheet and the spatial-temporal development of induced seismicity within the Groningen gas field. J. Geophys. Res. Solid Earth 122, 10299–10320. https://doi.org/10.1002/2017JB014356 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Bourne, S. J., Oates, S. J. & Elk, J. V. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk. Geophys. J. Int. 213, 1693–1700 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Bourne, S. J. & Oates, S. J. Stress-dependent magnitudes of induced earthquakes in the Groningen gas field. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2020JB020013 (2020).

    Article 

    Google Scholar
     

  • Willacy, C. et al. Full-waveform event location and moment tensor inversion for induced seismicity. Geophysics 84(2), KS39–KS47. https://doi.org/10.1190/GEO2018-0212.1 (2019).

    Article 

    Google Scholar
     

  • Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34(8), 185–188 (1944).

    Article 

    Google Scholar
     

  • Aki, K. Maximum likelihood estimate of b in the formula log N=a-bM and its confidence limits. Bull. Earthq. Res. Inst. (Tokyo) 43, 237–239 (1965).


    Google Scholar
     

  • Utsu, T. A method for determining the value of “b” in a formula log n= a-bm showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ. 13, 99–103 (1965).


    Google Scholar
     

  • Ogata, Y. & Yamashina, K. Unbiased estimate for b-value of magnitude frequency. J. Phys. Earth 34, 187–194 (1986).

    Article 

    Google Scholar
     

  • Woessner, J. & Wiemer, S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am. 95(2), 684–698 (2005).

    Article 

    Google Scholar
     

  • Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464. https://doi.org/10.1214/aos/1176344136 (1978).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Boslaugh, S. Statistics in a Nutshell (O’Reilly Media, 2012).


    Google Scholar
     

  • Bender, B. Maximum likelihood estimation of b-values for magnitude grouped data. Bull. Seism. Soc. Am. 73(3), 831–851 (1983).

    Article 

    Google Scholar
     

  • Geffers, G.-M., Main, I. G. & Naylor, M. Biases in estimating b-values from small earthquake catalogues: How high are high b-values?. Geophys. J. Int. 229, 1840–1855. https://doi.org/10.1093/gji/ggac028 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Cavanaugh, J. E. Unifying the derivations of the Akaike and corrected Akaike information criteria. Stat. Probab. Lett. 31(2), 201–208. https://doi.org/10.1016/s0167-7152(96)00128-9 (1997).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Kendall, M. G. Rank Correlation Methods (C. Griffin, 1948).

    MATH 

    Google Scholar
     

  • Van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W. & Hosseini, S. M. Induced earthquake magnitudes are as large as (statistically) expected. J. Geophys. Res. Solid Earth 121, 4575–4590. https://doi.org/10.1002/2016JB012818 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Muntendam-Bos, A. G. Clustering characteristics of gas-extraction induced seismicity in the Groningen gas field. Geophys. J. Int. 221, 879–892. https://doi.org/10.1093/gji/ggaa038 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Muntendam-Bos, A. G. & De Waal, J.A. (2013) Reassessment of the probability of higher magnitude earthquakes in the Groningen gas field. SodM technical report (2013).

  • Beirlant, J., Kijko, A., Reynkens, T. & Einmahl, J. H. J. Estimating the maximum possible earthquake using extreme value methodology: The Groningen case. Nat. Hazards 98, 1091–1113. https://doi.org/10.1007/s11069-017-3162-2 (2019).

    Article 

    Google Scholar
     

  • NAM B.V. Report on Mmax Expert Workshop 8–10 March 2016 World Trade Centre, Schiphol Airport, the Netherlands. NAM report (2016).

  • Related posts

    East Troops Processed 91,000 kgs of Organic Fertilizer Delivered for Distribution

    scceu

    New Stop and Shop Distribution Center Coming to Manchester – NBC Connecticut

    scceu

    New Vaccine Supply And Distribution Problems Slow Fight Against Covid — And Provide More Crisis Management Lessons

    scceu