Supply Chain Council of European Union | Scceu.org
Supply Chain Risk

The Risks of Building Too Many Bio Labs

Manhattan is surrounded by a rolling sea of golden grass—the Flint Hills, North America’s last remaining tallgrass prairie. “No grass anywhere can put weight on cattle more quickly or more economically,” Jim Joy, a historian of ranching, wrote. In the nineteenth century, cattlemen from Texas and elsewhere began driving their herds overland to graze in the Flint Hills. Today, Kansas is at the geographical center of the American beef industry. It is the third-largest cattle-producing state in the country, and its immediate neighbors—Nebraska, Oklahoma, Missouri, and Colorado—are all in the top ten.

During and after the N.B.A.F. site-selection process, many scientists found it baffling that anyone would consider installing a high-containment animal-disease laboratory in the middle of livestock country. “It doesn’t make sense—it’s just insane,” Laura H. Kahn, a physician and research scholar at Princeton University’s Program on Science and Global Security, told me. Abigail Conrad, who was a developmental biologist at K-State when D.H.S. was making its choice, said that the decision “defies reason”; her husband, Gary, also a biologist, called it “beyond ludicrous,” “almost criminal,” and “genuinely stupid.”

Once infected with foot-and-mouth, animals with cloven hooves—cattle, sheep, goats, pigs, deer, bison—come down with fevers and painful blisters. A cow’s milk production can decline. Adult animals can lose weight, and young ones can die. An animal that recovers can still transmit the disease to others. According to the authors of a 2013 paper in the journal Preventive Veterinary Medicine, in countries that are officially foot-and-mouth-free but experience occasional outbreaks, “the costs involved in regaining free status have been enormous.” During the 2001 foot-and-mouth outbreak in England, exclusion zones made travel difficult; tourism from overseas declined by ten per cent. The ultimate cost of containing the outbreak was nearly five billion in today’s dollars. Its source remains undetermined.

In 2007, Britain experienced another, smaller foot-and-mouth outbreak, with only eight confirmed cases. In that instance, investigators were able to trace the infection to the Pirbright Institute, a world-renowned high-containment animal-disease research facility in Surrey. A building at Pirbright had an aging, faulty drainpipe; heavy rains probably washed the live virus from the defective drain out into the open, where truck tires picked it up. According to the G.A.O., one reason to confine foot-and-mouth study to an island is that “there is always some risk of a release from any biocontainment facility.” In fact, for just this reason, foot-and-mouth disease cannot be brought onto the U.S. mainland without the explicit permission of the Secretary of Agriculture.

On long enough time scales, mishaps at high-containment labs are probably inevitable. In March, 2004, a post-graduate medical student at the National Institute for Virology in Beijing, which was researching Sudden Acute Respiratory Syndrome (SARS), became infected, transmitting it to a nurse, who in turn gave it to five other people, including her mother, who died. In 2006, a scientist at Texas A&M University fell ill when she was infected with the bacteria Brucella; she’d got it while cleaning equipment. In 2014, workers clearing out a storage room at the National Institutes of Health, in Maryland, found glass tubes containing the smallpox virus, a disease that had been eradicated in 1980. (Scientists believed that all but two stockpiles—one in Siberia, another in Atlanta—had been destroyed.) That same year, the C.D.C. revealed that its employees had accidentally exposed eighty-four workers to live anthrax by sending non-deactivated samples between labs. While investigating that incident, it discovered four additional mishaps from the previous decade.

Military installations make mistakes, too. In 2015, the Defense Department revealed that, in the course of a decade, the Army’s Dugway Proving Ground, in Utah, had sent five hundred and seventy-five shipments of live anthrax bacteria to a hundred and ninety-four labs in the United States and seven other countries. (Workers, charged with using radiation to render the anthrax spores inert before shipping them, hadn’t checked to make sure the procedure had worked.) In a 2015 report, “Biolabs in Your Backyard,” USA Today documented hundreds of safety violations and accidents at high-containment labs, and, in 2014, the Guardian found that British high-security labs had experienced more than a hundred near-misses or accidents in five years.

From reinforced walls to sophisticated air filters, today’s state-of-the-art laboratories are more secure than ever. But no lab is perfect. Even island labs have weaknesses: the isolation that makes them safer also makes them more expensive to build, maintain, and upgrade; they are subject to storms, which can damage infrastructure and prevent employees from showing up for work. In the view of Larry Barrett, the director of the Plum Island Animal Disease Center, water isn’t an insurmountable barrier to disease: a steady enough wind could carry an aerosolized foot-and-mouth virus across a channel.

It’s tempting to see the construction of new labs as a logical response to biological threats. But a dearth of laboratories isn’t necessarily the bottleneck during a crisis. “We were underprepared for community transmission of the new coronavirus, a BSL-3 pathogen, in part because the C.D.C. and F.D.A. had not developed, delivered, and issued approval for public health labs to use appropriate diagnostic tests,” Khan said. “What we’re seeing is not necessarily a lack of labs,” Filippa Lentzos, a senior research fellow on biological threats at King’s College London, told me. The biggest challenges posed by the novel coronavirus, she continued, had to do with contact-tracing and communications—preparing the public, sharing accurate numbers, and battling the spread of misinformation.

There’s no question that the world needs laboratories like N.B.A.F. The question is: How many labs like N.B.A.F. does it need? If a government is worried about fires, it can build more fire stations without increasing the risk of fires breaking out. But high-containment labs are different. Even as researching pathogens reduces our collective risk, opening new labs increases it. In 2016, Lentzos and another biosecurity expert, Gregory Koblentz, of George Mason University, published a paper contending that a dramatic increase in the number of labs and scientists working on dangerous pathogens was adding to our collective risk. They identified a number of potential dangers, including accidental releases, worker infections, theft, and insider threats. (Foreign governments, they suggested, might also interpret the massive expansion in American research, much of it funded by the Department of Defense, as cover for an offensive bioweapons program, sparking a biodefense arms race.)

In their paper, Lentzos and Koblentz discuss the circumstances under which a government should consider not building a new lab. Because labs are expensive to build and maintain, they write, it may be wise to hold off if there’s a chance that funding won’t be sustainable. American biodefense funding is often unpredictable: while Congress has approved a coronavirus-response package of more than eight billion dollars, the White House budget for 2021, released in February, proposes cutting the C.D.C.’s budget by sixteen per cent. (The reductions include a twenty-five-million-dollar cut to the Public Health Preparedness and Response program and an eighteen-million-dollar cut to a Health and Human Services initiative called the Hospital Preparedness Program, which funds regional treatment centers for Ebola and other “special pathogens.”)

Governance is another crucial factor: rules and enforcement mechanisms need to address dual-use research, responsible science, and transparency. “Until all those bits that fall under governance are set up, it’s certainly not right to keep expanding the number of labs,” Lentzos said. In the United States, the governance of high-containment labs is a disorganized endeavor. The National Institutes of Health and the Occupational Health and Safety Administration both exercise some oversight, and the Federal Select Agent Program inspects labs that handle pathogens on its list. Yet it’s easy for labs to fall through the cracks of a list-based regulatory regime. For example, in 2017, researchers in Canada reconstituted the horsepox virus, which, because it is extinct, is not a select agent. Although horsepox can’t infect people, the research also demonstrated how a lab might re-create its cousin, smallpox, which can.

Related posts

Resilient homes, resilient people | Inquirer Business

scceu

Hurricane Fiona decimated Puerto Rico, while wealthy tax evaders fled

scceu

Auto parts industry revenue to grow 16-18 pc in FY22; outlook revised from negative to stable: ICRA

scceu