Supply Chain Council of European Union | Scceu.org
Procurement

The influence of pesticides on the corrosion of a Roman bowl excavated in Kent, UK

  • Goodburn-Brown, D. & Price, V. CSI: Sittingbourne: Conservation science investigations in a town center shopping mall. In: Science and Technology for the Conservation of Cultural Heritage (eds Rogerio-Candelera M.Á., Lazzari, M. & Cano Cerdán, E.) 393–6 (CRC Press, 2013).

  • Parfitt K & Richardson A. Report on excavations off Preston Hill, Wingham. (Canterbury, CAT, 2016).

  • Carvalho, LdC. Beyond Copper Soaps : Characterization of Copper Corrosion Containing Organics. Springerbriefs in Applied Sciences and Technology series. (SpringerNature, 2022)

  • Pollard, A. M. et al. Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineral. Mag. 53, 557–563 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Scott, D. A. A review of copper chlorides and related salts in bronze corrosion and as painting pigment. Stud. Conserv. 45, 39–53 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Smidt, E. & Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268–276 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • US Environmental Protection Agency. Health Assessment for Chlorinated Benzenes EPA/600/8–84–015F. (USEPA, 1985).

  • US Environmental Protection Agency. Reregistration eligibility decision (RED). DEET. EPA738-R-98-010. (USEPA, 1998).

  • Cheng, Y. et al. Chemical characteristics and origins of nitrogen-containing organic compounds in PM2.5 aerosols in the lower fraser valley. Environ. Sci. Technol. 40, 5846–5852 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tylecote, R. F. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper. J. Archaeol. Sci. 6, 345–368 (1979).

    CAS 
    Article 

    Google Scholar
     

  • Mattsson, E. et al. Deterioration of archaeological material in soil: results on bronze artefacts (Swedish National Heritage Board, Stockholm, 1997).

  • Selwyn, L. Metals and corrosion: A handbook for the conservation professional (Canadian Conservation Institute, 2004).


    Google Scholar
     

  • Scott, D. A. Copper and bronze in art: Corrosion, colorants, conservation. (Getty Conservation Institute, Los Angeles, 2002).

  • British Geological Survey (BGS) ID: 12083418 : BGS Reference: TR25NW60 British National Grid (27700) : 624000,158000 http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSBoreholes

  • British Geological Survey (BGS) ID: 18139205 : BGS Reference: TR25NW77 British National Grid (27700) : 624700,158000 http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSBoreholes

  • Cranfield Soil and Agrifood Institute. SoilScapes. http://www.landis.org.uk/soilscapes/

  • Nord, A. G. et al. Factors influencing the long-term corrosion of bronze artefacts in soil. Prot. Met. 41, 309–316 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Ullén, I. et al. The degradation of archaeological bronzes underground: Evidence from museum collections. Antiquity 78, 380–390 (2004).

    Article 

    Google Scholar
     

  • Courtney, K. D. Hexachlorobenzene (HCB): A review. Environ. Res. 20, 225–266 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hardman, D. J. Biotransformation of halogenated compounds. Crit. Rev. Biotechnol. 11, 1–40 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bollag, J.-M. Microbial Transformation of Pesticides. In Advances in Applied Microbiology 18 (ed. Perlman, D.) 75–130 (Academic Press, 1974).

  • Dolfing, J. & Harrison, B. K. Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol. Ecol. 13, 23–29 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Yin, H. et al. Insights into electroreductive dehalogenation mechanisms of chlorinated environmental pollutants. ChemElectroChem 7, 1825–1837 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bosma, T. N. P. et al. Reductive dechlorination of all trichloro- and dichlorobenzene isomers. FEMS Microbiol. Ecol. 4, 223–229 (1988).

    Article 

    Google Scholar
     

  • Adrian, L. & Görisch, H. Microbial transformation of chlorinated benzenes under anaerobic conditions. Res. Microbiol. 153, 131–137 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reineke, W. & Knackmuss, H. J. Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47, 395–402 (1984).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schraa, G. et al. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. Strain A175. Appl. Environ. Microbiol. 52, 1374–1381 (1986).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spain, J. C. & Nishino, S. F. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53, 1010–1019 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guerin, T. F. Ex-situ bioremediation of chlorobenzenes in soil. J. Hazard. Mater. 154, 9–20 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brahushi, F. et al. Fate processes of chlorobenzenes in soil and potential remediation strategies: A review. Pedosphere 27, 407–420 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Alonso, F. et al. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4092 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raut, S. S. et al. Efficacy of zero-valent copper (Cu0) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. Chemosphere 159, 359–366 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weidlich, T. The influence of copper on halogenation/dehalogenation reactions of aromatic compounds and its role in the destruction of polyhalogenated aromatic contaminants. Catalysts 11, 378 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hagenmaier, H. et al. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environ. Sci. Technol. 21, 1085–1088 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Alderman, S. L. et al. An infrared and X-ray spectroscopic study of the reactions of 2-chlorophenol, 1,2-Dichlorobenzene, and chlorobenzene with model CuO/silica fly ash surfaces. Environ. Sci. Technol. 39, 7396–7401 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang, L. et al. Influence of degradation behavior of coexisting chlorobenzene congeners pentachlorobenzene, 1,2,4,5-tetrachlorobenzene, and 1,2,4-trichlorobenzene on the anaerobic reductive dechlorination of hexachlorobenzene in dye plant contaminated soil. Water Air. Soil Pollut. 226, 1–9 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ramanand, K. et al. Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl. Environ. Microbiol. 59, 3266–3272 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rawlins, B. G. et al. Chlorine (Cl). In The Advanced Soil Geochemical Atlas of England and Wales. 58–61 (BGS, 2012).

  • Scott, D. A. Metallography and microstructure of ancient and historic metals (Getty Conservation Institute & Archetype Books, 1991).


    Google Scholar
     

  • Casaletto, M. P. et al. Production of reference “ancient” Cu-based alloys and their accelerated degradation methods. Appl. Phys. A: Mater. Sci. Process. 83, 617–622 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McNeil, M. & Selwyn, L. S. Electrochemical processes in metallic corrosion. In Handbook of Archaeological Sciences (eds. Brothwell, D. R & Pollard, A. M.) 605–14 (Wiley, Chichester, 2001).

  • Rémazeilles, C. & Conforto, E. A buried roman bronze inkwell–Chemical interactions with agricultural fertilizers. Stud. Conserv. 53, 110–117 (2008).

    Article 

    Google Scholar
     

  • Pollard, A. M. et al. Assessing the influence of agrochemicals on the rate of copper corrosion in the vadose zone of arable land Part 1: Field experiments. Conserv. Manag. Archaeol. Sites. 6, 363–376 (2004).

    Article 

    Google Scholar
     

  • Pollard, A. M. et al. Assessing the influence of agrochemicals on the rate of copper corrosion in the vadose zone of arable land Part 2: Laboratory simulations. Conserv. Manag. Archaeol. Sites. 7, 225–239 (2006).

    Article 

    Google Scholar
     

  • Wilson, L. et al. Assessing the influence of agrochemicals on the nature of copper corrosion in the vadose zone of arable land Part 3: Geochemical modelling. Conserv. Manag. Archaeol. Sites 7, 241–260 (2006).

    Article 

    Google Scholar
     

  • Zhang, R. et al. Theoretical study of the C–Cl bond dissociation enthalpy and electronic structure of substituted chlorobenzene compounds. CJCP 22, 235–240 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Canada, H. et al. Canadian environmental protection act: Priority substances list assessment report: Hexachlorobenzene (Canada Communication Group, 1993).


    Google Scholar
     

  • Starek-Świechowicz, B. et al. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol. Rep. 69, 1232–1239 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Berntssen, M. H.G. et al. Chapter 20–Chemical contamination of finfish with organic pollutants and metals. In Chemical Contaminants and Residues in Food 2nd Edition (eds Schrenk, D. & Cartus, A.) 517–51 (Elsevier Science & Technology, Cambridge, 2017).

  • Pontillo, C. A. et al. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol. Appl. Pharmacol. 268, 331–342 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dhaibar, H. A. et al. Hexachlorobenzene, a pollutant in hypothyroidism and reproductive aberrations: A perceptive transgenerational study. Environ. Sci. Pollut. Res. 28, 11077–11089 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Iyer, P. & Makris, S. Chapter 12 – developmental and reproductive toxicology of pesticides. In Hayes’ Handbook of Pesticide Toxicology 3rd Edition (ed. Krieger, R.) 381–440 (Elsevier Science & Technology, Saint Louis, 2010).

  • Barber, J. L. et al. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Sci. Total Environ. 349, 1–44 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meijer, S. N. et al. Organochlorine pesticide residues in archived UK Soil. Environ. Sci. Technol. 35, 1989–1995 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bailey, R. E. Global hexachlorobenzene emissions. Chemosphere 43, 167–182 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, M.-J. et al. Chlorobenzenes in field soil with a history of multiple sewage sludge applications. Environ. Sci. Technol. 29, 356–362 (1995).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Santos Dos, M. M. et al. DEET occurrence in wastewaters: Seasonal, spatial and diurnal variability–mismatches between consumption data and environmental detection. Environ. Int. 132, 105038 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Manamsa, K. et al. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales. Sci. Total Environ. 568, 712–726 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schofield, J. et al. Archaeological practice in Great Britain: A heritage handbook (Springer, 2011).

    Book 

    Google Scholar
     

  • Aitchison, K. No Going Back: Remembering when British archaeology changed forever. In Training and Practice for Modern Day Archaeologists (eds Jameson, J. H. & Eogan, J.) 53–67 (Springer, New York, 2013).

  • Aitchison, K. After the “gold rush”: Gobal archaeology in 2009. World Archaeol. 41, 659–671 (2009).

    Article 

    Google Scholar
     

  • Ingo, G. M. et al. Uncommon corrosion phenomena of archaeological bronze alloys. Appl. Phys. A: Mater. Sci. Process. 83, 581–588 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Portable Antiquities Scheme. https://finds.org.uk/

  • Ferguson, N. An assessment of the positive contribution and negative impact of hobbyist metal detecting to sites of conflict in the UK (ProQuest Dissertations Publishing, 2013).

  • Related posts

    Centre Exempts Procurement Agencies, Mandis, Farming Operations, Farm Workers From Lockdown Rules

    scceu

    Monument Reports First Quarter Fiscal 2022 (“Q1 FY2022”)

    scceu

    The Recycling Partnership launches Center for Sustainable Behavior & Impact

    scceu