Supply Chain Council of European Union | Scceu.org
Procurement

The influence of pesticides on the corrosion of a Roman bowl excavated in Kent, UK

  • Goodburn-Brown, D. & Price, V. CSI: Sittingbourne: Conservation science investigations in a town center shopping mall. In: Science and Technology for the Conservation of Cultural Heritage (eds Rogerio-Candelera M.Á., Lazzari, M. & Cano Cerdán, E.) 393–6 (CRC Press, 2013).

  • Parfitt K & Richardson A. Report on excavations off Preston Hill, Wingham. (Canterbury, CAT, 2016).

  • Carvalho, LdC. Beyond Copper Soaps : Characterization of Copper Corrosion Containing Organics. Springerbriefs in Applied Sciences and Technology series. (SpringerNature, 2022)

  • Pollard, A. M. et al. Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineral. Mag. 53, 557–563 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Scott, D. A. A review of copper chlorides and related salts in bronze corrosion and as painting pigment. Stud. Conserv. 45, 39–53 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Smidt, E. & Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 27, 268–276 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • US Environmental Protection Agency. Health Assessment for Chlorinated Benzenes EPA/600/8–84–015F. (USEPA, 1985).

  • US Environmental Protection Agency. Reregistration eligibility decision (RED). DEET. EPA738-R-98-010. (USEPA, 1998).

  • Cheng, Y. et al. Chemical characteristics and origins of nitrogen-containing organic compounds in PM2.5 aerosols in the lower fraser valley. Environ. Sci. Technol. 40, 5846–5852 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tylecote, R. F. The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper. J. Archaeol. Sci. 6, 345–368 (1979).

    CAS 
    Article 

    Google Scholar
     

  • Mattsson, E. et al. Deterioration of archaeological material in soil: results on bronze artefacts (Swedish National Heritage Board, Stockholm, 1997).

  • Selwyn, L. Metals and corrosion: A handbook for the conservation professional (Canadian Conservation Institute, 2004).


    Google Scholar
     

  • Scott, D. A. Copper and bronze in art: Corrosion, colorants, conservation. (Getty Conservation Institute, Los Angeles, 2002).

  • British Geological Survey (BGS) ID: 12083418 : BGS Reference: TR25NW60 British National Grid (27700) : 624000,158000 http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSBoreholes

  • British Geological Survey (BGS) ID: 18139205 : BGS Reference: TR25NW77 British National Grid (27700) : 624700,158000 http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSBoreholes

  • Cranfield Soil and Agrifood Institute. SoilScapes. http://www.landis.org.uk/soilscapes/

  • Nord, A. G. et al. Factors influencing the long-term corrosion of bronze artefacts in soil. Prot. Met. 41, 309–316 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Ullén, I. et al. The degradation of archaeological bronzes underground: Evidence from museum collections. Antiquity 78, 380–390 (2004).

    Article 

    Google Scholar
     

  • Courtney, K. D. Hexachlorobenzene (HCB): A review. Environ. Res. 20, 225–266 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hardman, D. J. Biotransformation of halogenated compounds. Crit. Rev. Biotechnol. 11, 1–40 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bollag, J.-M. Microbial Transformation of Pesticides. In Advances in Applied Microbiology 18 (ed. Perlman, D.) 75–130 (Academic Press, 1974).

  • Dolfing, J. & Harrison, B. K. Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol. Ecol. 13, 23–29 (1993).

    CAS 
    Article 

    Google Scholar
     

  • Yin, H. et al. Insights into electroreductive dehalogenation mechanisms of chlorinated environmental pollutants. ChemElectroChem 7, 1825–1837 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bosma, T. N. P. et al. Reductive dechlorination of all trichloro- and dichlorobenzene isomers. FEMS Microbiol. Ecol. 4, 223–229 (1988).

    Article 

    Google Scholar
     

  • Adrian, L. & Görisch, H. Microbial transformation of chlorinated benzenes under anaerobic conditions. Res. Microbiol. 153, 131–137 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reineke, W. & Knackmuss, H. J. Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47, 395–402 (1984).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schraa, G. et al. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. Strain A175. Appl. Environ. Microbiol. 52, 1374–1381 (1986).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spain, J. C. & Nishino, S. F. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53, 1010–1019 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guerin, T. F. Ex-situ bioremediation of chlorobenzenes in soil. J. Hazard. Mater. 154, 9–20 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brahushi, F. et al. Fate processes of chlorobenzenes in soil and potential remediation strategies: A review. Pedosphere 27, 407–420 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Alonso, F. et al. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4092 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raut, S. S. et al. Efficacy of zero-valent copper (Cu0) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. Chemosphere 159, 359–366 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weidlich, T. The influence of copper on halogenation/dehalogenation reactions of aromatic compounds and its role in the destruction of polyhalogenated aromatic contaminants. Catalysts 11, 378 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Hagenmaier, H. et al. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environ. Sci. Technol. 21, 1085–1088 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Alderman, S. L. et al. An infrared and X-ray spectroscopic study of the reactions of 2-chlorophenol, 1,2-Dichlorobenzene, and chlorobenzene with model CuO/silica fly ash surfaces. Environ. Sci. Technol. 39, 7396–7401 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang, L. et al. Influence of degradation behavior of coexisting chlorobenzene congeners pentachlorobenzene, 1,2,4,5-tetrachlorobenzene, and 1,2,4-trichlorobenzene on the anaerobic reductive dechlorination of hexachlorobenzene in dye plant contaminated soil. Water Air. Soil Pollut. 226, 1–9 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Ramanand, K. et al. Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl. Environ. Microbiol. 59, 3266–3272 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rawlins, B. G. et al. Chlorine (Cl). In The Advanced Soil Geochemical Atlas of England and Wales. 58–61 (BGS, 2012).

  • Scott, D. A. Metallography and microstructure of ancient and historic metals (Getty Conservation Institute & Archetype Books, 1991).


    Google Scholar
     

  • Casaletto, M. P. et al. Production of reference “ancient” Cu-based alloys and their accelerated degradation methods. Appl. Phys. A: Mater. Sci. Process. 83, 617–622 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McNeil, M. & Selwyn, L. S. Electrochemical processes in metallic corrosion. In Handbook of Archaeological Sciences (eds. Brothwell, D. R & Pollard, A. M.) 605–14 (Wiley, Chichester, 2001).

  • Rémazeilles, C. & Conforto, E. A buried roman bronze inkwell–Chemical interactions with agricultural fertilizers. Stud. Conserv. 53, 110–117 (2008).

    Article 

    Google Scholar
     

  • Pollard, A. M. et al. Assessing the influence of agrochemicals on the rate of copper corrosion in the vadose zone of arable land Part 1: Field experiments. Conserv. Manag. Archaeol. Sites. 6, 363–376 (2004).

    Article 

    Google Scholar
     

  • Pollard, A. M. et al. Assessing the influence of agrochemicals on the rate of copper corrosion in the vadose zone of arable land Part 2: Laboratory simulations. Conserv. Manag. Archaeol. Sites. 7, 225–239 (2006).

    Article 

    Google Scholar
     

  • Wilson, L. et al. Assessing the influence of agrochemicals on the nature of copper corrosion in the vadose zone of arable land Part 3: Geochemical modelling. Conserv. Manag. Archaeol. Sites 7, 241–260 (2006).

    Article 

    Google Scholar
     

  • Zhang, R. et al. Theoretical study of the C–Cl bond dissociation enthalpy and electronic structure of substituted chlorobenzene compounds. CJCP 22, 235–240 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Canada, H. et al. Canadian environmental protection act: Priority substances list assessment report: Hexachlorobenzene (Canada Communication Group, 1993).


    Google Scholar
     

  • Starek-Świechowicz, B. et al. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol. Rep. 69, 1232–1239 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Berntssen, M. H.G. et al. Chapter 20–Chemical contamination of finfish with organic pollutants and metals. In Chemical Contaminants and Residues in Food 2nd Edition (eds Schrenk, D. & Cartus, A.) 517–51 (Elsevier Science & Technology, Cambridge, 2017).

  • Pontillo, C. A. et al. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol. Appl. Pharmacol. 268, 331–342 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dhaibar, H. A. et al. Hexachlorobenzene, a pollutant in hypothyroidism and reproductive aberrations: A perceptive transgenerational study. Environ. Sci. Pollut. Res. 28, 11077–11089 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Iyer, P. & Makris, S. Chapter 12 – developmental and reproductive toxicology of pesticides. In Hayes’ Handbook of Pesticide Toxicology 3rd Edition (ed. Krieger, R.) 381–440 (Elsevier Science & Technology, Saint Louis, 2010).

  • Barber, J. L. et al. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Sci. Total Environ. 349, 1–44 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meijer, S. N. et al. Organochlorine pesticide residues in archived UK Soil. Environ. Sci. Technol. 35, 1989–1995 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bailey, R. E. Global hexachlorobenzene emissions. Chemosphere 43, 167–182 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, M.-J. et al. Chlorobenzenes in field soil with a history of multiple sewage sludge applications. Environ. Sci. Technol. 29, 356–362 (1995).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Santos Dos, M. M. et al. DEET occurrence in wastewaters: Seasonal, spatial and diurnal variability–mismatches between consumption data and environmental detection. Environ. Int. 132, 105038 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Manamsa, K. et al. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales. Sci. Total Environ. 568, 712–726 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schofield, J. et al. Archaeological practice in Great Britain: A heritage handbook (Springer, 2011).

    Book 

    Google Scholar
     

  • Aitchison, K. No Going Back: Remembering when British archaeology changed forever. In Training and Practice for Modern Day Archaeologists (eds Jameson, J. H. & Eogan, J.) 53–67 (Springer, New York, 2013).

  • Aitchison, K. After the “gold rush”: Gobal archaeology in 2009. World Archaeol. 41, 659–671 (2009).

    Article 

    Google Scholar
     

  • Ingo, G. M. et al. Uncommon corrosion phenomena of archaeological bronze alloys. Appl. Phys. A: Mater. Sci. Process. 83, 581–588 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Portable Antiquities Scheme. https://finds.org.uk/

  • Ferguson, N. An assessment of the positive contribution and negative impact of hobbyist metal detecting to sites of conflict in the UK (ProQuest Dissertations Publishing, 2013).

  • Related posts

    The world is chaos but my Zoom background is control-freak perfection • The Register

    scceu

    Illinois State Police make progress with DNA testing backlog, push for procurement reform | Illinois

    scceu

    3 days on, grain mkts on the boil over delay in paddy procurement | Chandigarh News

    scceu