Supply Chain Council of European Union | Scceu.org
Procurement

Synthesis and characterization of biopolyurethane crosslinked with castor oil-based hyperbranched polyols as polymeric solid–solid phase change materials

  • Zhou, D., Zhao, C.-Y. & Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 92, 593–605 (2012).

    CAS 

    Google Scholar
     

  • Sharma, R., Ganesan, P., Tyagi, V., Metselaar, H. & Sandaran, S. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 95, 193–228 (2015).

    CAS 

    Google Scholar
     

  • Alva, G., Lin, Y. & Fang, G. An overview of thermal energy storage systems. Energy 144, 341–378 (2018).


    Google Scholar
     

  • Regin, A. F., Solanki, S. & Saini, J. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew. Sustain. Energy Rev. 12, 2438–2458 (2008).

    CAS 

    Google Scholar
     

  • Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M. M. & Stefanakos, E. K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39, 285–319 (2013).


    Google Scholar
     

  • Prieto, C. & Cabeza, L. F. Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl. Energy 254, 113646 (2019).


    Google Scholar
     

  • Al-Jethelah, M., Tasnim, S. H., Mahmud, S. & Dutta, A. Nano-PCM filled energy storage system for solar-thermal applications. Renew. Energy 126, 137–155 (2018).

    CAS 

    Google Scholar
     

  • Mofijur, M. et al. Phase change materials (PCM) for solar energy usages and storage: An overview. Energies 12, 3167 (2019).

    CAS 

    Google Scholar
     

  • Javadi, F., Metselaar, H. & Ganesan, P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Sol. Energy 206, 330–352 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Al-harahsheh, M., Abu-Arabi, M., Mousa, H. & Alzghoul, Z. Solar desalination using solar still enhanced by external solar collector and PCM. Appl. Therm. Eng. 128, 1030–1040 (2018).


    Google Scholar
     

  • Abu-Arabi, M., Al-harahsheh, M., Mousa, H. & Alzghoul, Z. Theoretical investigation of solar desalination with solar still having phase change material and connected to a solar collector. Desalination 448, 60–68 (2018).

    CAS 

    Google Scholar
     

  • Yousef, M. S. & Hassan, H. Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system. Energy Convers. Manag. 179, 349–361 (2019).


    Google Scholar
     

  • Osterman, E., Tyagi, V., Butala, V., Rahim, N. A. & Stritih, U. Review of PCM based cooling technologies for buildings. Energy Build. 49, 37–49 (2012).


    Google Scholar
     

  • Souayfane, F., Fardoun, F. & Biwole, P.-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 129, 396–431 (2016).


    Google Scholar
     

  • Zavrl, E. & Stritih, U. Improved thermal energy storage for nearly zero energy buildings with PCM integration. Sol. Energy 190, 420–426 (2019).

    ADS 

    Google Scholar
     

  • Royo, P. et al. High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries. Energy 173, 1030–1040 (2019).


    Google Scholar
     

  • Li, D., Wang, J., Ding, Y., Yao, H. & Huang, Y. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage. Appl. Energy 236, 1168–1182 (2019).


    Google Scholar
     

  • Du, K., Calautit, J., Eames, P. & Wu, Y. A state-of-the-art review of the application of phase change materials (PCM) in mobilized-thermal energy storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renew. Energy https://doi.org/10.1016/j.renene.2020.12.057 (2020).

    Article 

    Google Scholar
     

  • Sundararajan, S., Samui, A. B. & Kulkarni, P. S. Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J. Mater. Chem. A 5, 18379–18396 (2017).

    CAS 

    Google Scholar
     

  • Kumar, K., Sharma, K., Verma, S. & Upadhyay, N. Experimental investigation of graphene-paraffin wax nanocomposites for thermal energy storage. Mater. Today Proc. 18, 5158–5163 (2019).

    CAS 

    Google Scholar
     

  • Wang, R., Ren, M., Gao, X. & Qin, L. Preparation and properties of fatty acids based thermal energy storage aggregate concrete. Constr. Build. Mater. 165, 1–10 (2018).

    ADS 

    Google Scholar
     

  • Wong-Pinto, L.-S., Milian, Y. & Ushak, S. Progress on use of nanoparticles in salt hydrates as phase change materials. Renew. Sustain. Energy Rev. 122, 109727 (2020).

    CAS 

    Google Scholar
     

  • Atinafu, D. G., Dong, W., Huang, X., Gao, H. & Wang, G. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Appl. Energy 211, 1203–1215 (2018).

    CAS 

    Google Scholar
     

  • Atinafu, D. G., Dong, W., Berardi, U. & Kim, S. Phase change materials stabilized by porous metal supramolecular gels: Gelation effect on loading capacity and thermal performance. Chem. Eng. J. 394, 124806 (2020).

    CAS 

    Google Scholar
     

  • Jebasingh, B. E. & Arasu, A. V. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 24, 52–74 (2020).


    Google Scholar
     

  • Wu, S., Yan, T., Kuai, Z. & Pan, W. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater. 25, 251–295 (2020).


    Google Scholar
     

  • Zhou, Y. et al. Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chem. Eng. J. 338, 117–125 (2018).

    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Polyurethane-based solid-solid phase change materials with halloysite nanotubes-hybrid graphene aerogels for efficient light-and electro-thermal conversion and storage. Carbon 142, 558–566 (2019).

    CAS 

    Google Scholar
     

  • Wei, X. et al. Photo-and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Appl. Energy 236, 70–80 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Cao, H. et al. The influence of hydrogen bonding on N-methyldiethanolamine-extended polyurethane solid–solid phase change materials for energy storage. RSC Adv. 7, 11244–11252 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Sundararajan, S., Samui, A. B. & Kulkarni, P. S. Thermal energy storage using poly (ethylene glycol) incorporated hyperbranched polyurethane as solid–solid phase change material. Ind. Eng. Chem. Res. 56, 14401–14409 (2017).

    CAS 

    Google Scholar
     

  • Qian, Y. et al. Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl. Mater. Interfaces 11, 45832–45843 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Du, X. et al. Ti3C2T x@ PDA-integrated polyurethane phase change composites with superior solar-thermal conversion efficiency and improved thermal conductivity. ACS Sustain. Chem. Eng. 8, 5799–5806 (2020).

    CAS 

    Google Scholar
     

  • Wang, C. et al. Graphene oxide stabilized polyethylene glycol for heat storage. Phys. Chem. Chem. Phys. 14, 13233–13238 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Sarı, A., Biçer, A. & Alkan, C. Thermal energy storage characteristics of poly (styrene-co-maleic anhydride)-graft-PEG as polymeric solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 161, 219–225 (2017).


    Google Scholar
     

  • Lee, Y. J., Park, C. K. & Kim, S. H. Fabrication of castor-oil/polycaprolactone based bio-polyurethane foam reinforced with nanocellulose. Polym. Compos. 39, 2004–2011 (2018).

    CAS 

    Google Scholar
     

  • Lee, J. H., Park, S. H. & Kim, S. H. Fabrication of bio-based polyurethane nanofibers incorporated with a triclosan/cyclodextrin complex for antibacterial applications. RSC Adv. 10, 3450–3458 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. H., Oh, K. W. & Kim, S. H. Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos. Sci. Technol. 86, 82–88 (2013).

    CAS 

    Google Scholar
     

  • Park, S. H., Ryu, Y. S. & Kim, S. H. Effect of modified silica nanoparticle on the properties of bio-based polyurethane ultrafine fibers. J. Mater. Sci. 50, 1760–1769 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Peng, K. et al. Preparation and properties of β-cyclodextrin/4, 4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 145, 238–247 (2016).

    CAS 

    Google Scholar
     

  • Liu, Z. et al. Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol. Energy Mater. Sol. Cells 147, 177–184 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Du, X., Wang, H., Wu, Y., Du, Z. & Cheng, X. Solid–solid phase-change materials based on hyperbranched polyurethane for thermal energy storage. J. Appl. Polym. Sci. https://doi.org/10.1002/app.45014 (2017).

    Article 

    Google Scholar
     

  • Cao, Q. & Liu, P. Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur. Polym. J. 42, 2931–2939 (2006).

    CAS 

    Google Scholar
     

  • Sundararajan, S., Samui, A. B. & Kulkarni, P. S. Synthesis and characterization of poly (ethylene glycol)(PEG) based hyperbranched polyurethanes as thermal energy storage materials. Thermochim. Acta 650, 114–122 (2017).

    CAS 

    Google Scholar
     

  • Liao, L., Cao, Q. & Liao, H. Investigation of a hyperbranched polyurethane as a solid-state phase change material. J. Mater. Sci. 45, 2436–2441 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, J. H. & Kim, S. H. Fabrication of silane-grafted graphene oxide and its effect on the structural, thermal, mechanical, and hysteretic behavior of polyurethane. Sci. Rep. 10, 1–13 (2020).

    ADS 

    Google Scholar
     

  • Chen, J. et al. Highly efficient epoxidation of vegetable oils catalyzed by a manganese complex with hydrogen peroxide and acetic acid. Green Chem. 21, 2436–2447 (2019).

    CAS 

    Google Scholar
     

  • Encinar, J. M., Nogales-Delgado, S., Sánchez, N. & González, J. F. Biolubricants from rapeseed and castor oil transesterification by using titanium isopropoxide as a catalyst: Production and characterization. Catalysts 10, 366 (2020).

    CAS 

    Google Scholar
     

  • Sun, J., Aly, K. I. & Kuckling, D. Synthesis of hyperbranched polymers from vegetable oil based monomers via ozonolysis pathway. J. Polym. Sci. Part A Polym. Chem. 55, 2104–2114 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Feng, Y. et al. A solvent-free and scalable method to prepare soybean-oil-based polyols by thiol–ene photo-click reaction and biobased polyurethanes therefrom. ACS Sustain. Chem. Eng. 5, 7365–7373 (2017).

    CAS 

    Google Scholar
     

  • Lee, J. H., Park, C. K., Jung, J. S. & Kim, S. H. Synthesis of vegetable oil-based hyperbranched polyol via thiol-yne click reaction and their application in polyurethane. Prog. Org. Coat. 164, 106700 (2022).

    CAS 

    Google Scholar
     

  • Park, C. K., Lee, J. H., Kim, I. S. & Kim, S. H. Castor oil-based polyols with gradually increasing functionalities for biopolyurethane synthesis. J. Appl. Polym. Sci. 137, 48304 (2019).


    Google Scholar
     

  • Lee, J. H., Kim, S. H. & Oh, K. W. Bio-based polyurethane foams with castor oil based multifunctional polyols for improved compressive properties. Polymers-Basel 13, 576 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 323, 757–760 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C., Liu, W., Yang, H., Zhao, Y. & Liu, S. Synthesis of solid–solid phase change material for thermal energy storage by crosslinking of polyethylene glycol with poly (glycidyl methacrylate). Sol. Energy 85, 2679–2685 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, C., Liu, W., Wang, H. & Peng, K. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl. Energy 152, 198–206 (2015).

    CAS 

    Google Scholar
     

  • Huang, X. et al. Preparation and characterization of pentaerythritol/butane tetracarboxylic acid/polyethylene glycol crosslinking copolymers as solid-solid phase change materials. J. Macromol. Sci. Part A 53, 500–506 (2016).

    CAS 

    Google Scholar
     

  • Mu, S. et al. Preparation and thermal properties of cross-linked poly (acrylonitrile-co-itaconate)/polyethylene glycol as novel form-stable phase change material for thermal energy storage. Mater. Lett. 171, 23–26 (2016).

    CAS 

    Google Scholar
     

  • Qin, Y. et al. Structure-property correlation of poly (ethylene glycol) based form stable phase change materials with different crosslinking structure. Sol. Energy Mater. Sol. Cells 203, 110192 (2019).

    CAS 

    Google Scholar
     

  • Harlé, T., Nguyen, G. T., Ledesert, B., Mélinge, Y. & Hebert, R. L. Cross-linked polyurethane as solid-solid phase change material for low temperature thermal energy storage. Thermochim. Acta 685, 178191 (2020).


    Google Scholar
     

  • Sundararajan, S., Samui, A. B. & Kulkarni, P. S. Crosslinked polymer networks of poly (ethylene glycol)(PEG) and hydroxyl terminated poly (dimethyl siloxane)(HTPDMS) as polymeric phase change material for thermal energy storage. Sol. Energy 181, 187–194 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Graphene oxide/polyurethane-based solid–solid phase change materials with enhanced mechanical properties. Thermochim. Acta 658, 38–46 (2017).

    CAS 

    Google Scholar
     

  • Yang, Y., Kong, W. & Cai, X. Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage. Energy Build. 158, 37–42 (2018).


    Google Scholar
     

  • Kong, W., Fu, X., Yuan, Y., Liu, Z. & Lei, J. Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Adv. 7, 29554–29562 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Gaboriaud, F. & Vantelon, J. Mechanism of thermal degradation of polyurethane based on MDI and propoxylated trimethylol propane. J. Polym. Sci. Polym. Chem. Ed. 20, 2063–2071 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • Related posts

    Remarkable long-term cycling performance for the coated spherical graphite of Mason Graphite TSX Venture Exchange:LLG

    scceu

    Inside Out | It takes more than the famous to tell the story of Champaign County | Parks-recreation

    scceu

    Karuk leader Bill Tripp appointed to new federal wildfire commission – Times-Standard

    scceu