Supply Chain Council of European Union | Scceu.org
News

Supply Chain Network Reconstruction | Australian Bureau of Statistics

Acemoglu D., Akcigit U., Kerr W. (2016). Networks and the macroeconomy: An empirical exploration NBER Macroecon. Annual, 30 (1), pp. 273-335

Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz‐Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80(5), 1977-2016. https://doi.org/10.3982/ECTA9623

Almog, A., Squartini, T., & Garlaschelli, D. (2015). A GDP-driven model for the binary and weighted structure of the international trade network. New Journal of Physics, 17(1), 13009. https://doi.org/10.1088/1367-2630/17/1/013009

Anand, K., van Lelyveld, I., Banai, Á., Friedrich, S., Garratt, R., Hałaj, G., Fique, J., Hansen, I., Jaramillo, S. M., Lee, H., Molina-Borboa, J. L., Nobili, S., Rajan, S., Salakhova, D., Silva, T. C., Silvestri, L., & de Souza, Sergio Rubens Stancato. (2018). The missing links: A global study on uncovering financial network structures from partial data. Journal of Financial Stability, 35, 107-119. https://doi.org/10.1016/j.jfs.2017.05.012

Australian Bureau of Statistics (2020). Australian National Accounts: Supply Use Tables, retrieved September 9, 2020 https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-supply-use-tables/latest-release

Australian Bureau of Statistics (2021). Australian National Accounts: Input-Output Tables, retrieved September 9, 2020 https://www.abs.gov.au/statistics/economy/national-accounts/australian-national-accounts-input-output-tables/2018-19

Australian Tax Office, (2020). Single Touch Payroll, retrieved September 1, 2020, https://www.ato.gov.au/business/single-touch-payroll/

Bernard, A. B., Dhyne, E., Magerman, G. C. G., Moxnes, A., & Manova, K. (2019). The origins of firm heterogeneity: A production network approach, National Bureau of Economic Research. https://doi.org/10.3386/w25441

Bernard, A. B., Moxnes, A., & Saito, Y. U. (2019). Production networks, geography, and firm performance. The Journal of Political Economy, 127(2), 639-688. https://doi.org/10.1086/700764

Boehm C. E., Flaaen A., Pandalai-Nayar A. (2019). Input Linkages and the Transmission of Shocks: Firm-Level Evidence from the 2011 Tōhoku Earthquake. The Review of Economics and Statistics; 101 (1): 60–75.

Breza, E., Chandrasekhar, A. G., McCormick, T. H., & Pan, M. (2020). Using aggregated relational data to feasibly identify network structure without network data. The American Economic Review, 110(8), 2454-2484. https://doi.org/10.1257/aer.20170861

Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025.

Cairney, P. & Geyer:, R. (2017). “A Critical Discussion of Complexity Theory how does Complexity Thinking improve our Understanding of Politics and Policymaking?” Complexity, Governance & Networks, Vol. 3, No 2, p. 1-11  doi: http://dx.doi.org/10.20377/cgn-56

Caldarelli, G., Capocci, A., De Los Rios, P., & Muñoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89(25), 258702-258702. https://doi.org/10.1103/PhysRevLett.89.258702

Carvalho V. M., Nirei M., Saito Y. U., & Tahbaz-Salehi, A. (2016). “Supply Chain Disruptions: Evidence from the Great East Japan Earthquake”, Discussion papers 287, Policy Research Institute, Ministry of Finance Japan.

Cerdeiro, D. A, Komaromi, A., Liu, Y., Saeed, M. (2020). World Seaborne Trade in Real Time: A Proof of Concept for Building AIS-based Nowcasts from Scratch, IMF Working Papers, International Monetary Fund

Cimini, G. Squartini, T., Garlaschelli, D., Gabrielli, A. (2015). Systemic risk analysis on reconstructed economic and financial networks, Sci. Rep. 5 15758. http://dx.doi.org/10.1038/srep15758.

Commonwealth Scientific and Industrial Research Organisation (2021). ‘Unlocking infrastructure investment and regulatory options for more efficient transport of agriculture and broader freight’, Transport logistics-TraNSIT, retrieved September 9, 2020, https://www.csiro.au/en/research/technology-space/it/transport-logistics-transit

Cover, T. M., Thomas, J. A. (2006). Elements of Information Theory, Wiley-Interscience

De Masi, G., Iori, G., & Caldarelli, G. (2006). Fitness model for the italian interbank money market. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 74(6 Pt 2), 066112-066112. https://doi.org/10.1103/PhysRevE.74.066112

Department of Defence (2021). Global Supply Chain Program, retrieved September 9, 2020, https://www1.defence.gov.au/business-industry/industry-programs/global-supply-chain

Department of Foreign Affairs and Trade (2021a). Joint Statement on the Supply Chain Resilience Initiative by Australian, Indian and Japanese Trade Ministers, retrieved September 9, 2020, https://www.dfat.gov.au/news/media-release/joint-statement-supply-chain-resilience-initiative-australian-indian-and-japanese-trade-ministers

Department of Foreign Affairs and Trade (2021b). ‘Pivot: Diversifying Australia’s Trade and Investment Profile’, Australian government response joint standing committee trade investment growth report retrieved September 9, 2020, https://www.dfat.gov.au/sites/default/files/government-response-joint-standing-committee-trade-investment-growth-report.pdf

Department of Home Affairs (2021a). Critical Technology Supply Chain Principles, Discussion Paper, retrieved September 9, 2020, https://www.homeaffairs.gov.au/reports-and-pubs/files/critical-technology-supply-chain-principles-discussion-paper.pdf

Department of Home Affairs (2021b). Protecting Critical Infrastructure and Systems of National Significance, Consultation Paper, retrieved September 9, 2020, https://www.homeaffairs.gov.au/reports-and-pubs/files/protecting-critical-infrastructure-systems-consultation-paper.pdf

Department of Home Affairs (2021c). Australia’s Cyber Security Strategy 2020, retrieved September 9, 2020, https://www.homeaffairs.gov.au/cyber-security-subsite/files/cyber-security-strategy-2020.pdf

Department of Industry, Science, Energy and Resources (2021). Make it Happen: The Australian Government’s Modern Manufacturing Strategy, retrieved September 9, 2020, https://www.industry.gov.au/data-and-publications/make-it-happen-the-australian-governments-modern-manufacturing-strategy

Department of Infrastructure, Transport, Cities and Regional Development (2021a). The National Freight Data Hub, retrieved September 9, 2020, https://www.infrastructure.gov.au/transport/freight/national-freight-data-hub/index.aspx

Department of Infrastructure, Transport, Cities and Regional Development (2021b). National Freight and Supply Chain Strategy, National Action Plan, retrieved September 9, 2020, https://www.freightaustralia.gov.au/sites/default/files/documents/national-action-plan-august-2019.pdf

Department of Treasury (2020). Options for mandatory e-Invoicing adoption by businesses, retrieved September 1, 2020, from https://treasury.gov.au/consultation/c2020-122716

Dhyne, E., & Duprez, C. (2017). It’s a small, small world. A guided tour of the Belgian production network. International Productivity Monitor, (32), 84-96.

Dr Amineh Ghorbani A, Dr Francien DechesneB , Dr Virginia DignumC, Prof. Dr. Catholijn Jonker (2014). Enhancing ABM into an Inevitable Tool for Policy Analysis  

Eppel, E.A. & Rhodes, M.L. (2018). “Complexity theory and public management: a ‘becoming’ field”, Public management review, vol. 20, no. 7, pp. 949-959.

Freixas X, Laeven L, Peydró J (2015). “Chapter 8 – system risk and microprudential regulation” Systemic risk, crises, and macroprudential regulation. MIT Press, Boston

Furtado, B. A., Fuentes, M. A., & Tessone, C. J. (2019). Policy modeling and applications: State-of-the-art and perspectives. Complexity (New York, N.Y.), 2019, 1-11. https://doi.org/10.1155/2019/5041681

Gabaix X. (2011). The granular origins of aggregate fluctuations, Econometrica, 79 (3), pp. 733-772

Garlaschelli, D., & Loffredo, M. I. (2004). Fitness-dependent topological properties of the world trade web. Physical Review Letters, 93(18), https://doi.org/10.1103/PhysRevLett.93.188701

Garlaschelli, D., Battiston, S., Castri, M., Servedio, V. D. P., & Caldarelli, G. (2005). The scale-free topology of market investments. Physica A, 350(2), 491-499. https://doi.org/10.1016/j.physa.2004.11.040

Ghorbani, A, Dechesne, F, Dignum, V & Jonker, CM (2014). ‘Enhancing ABM into an inevitable tool for policy analysis’, Journal of Policy and Complex Systems, vol. 1, no. 1, pp. 61-76.

Haldane, A. G., & Turrell, A. E. (2019). Drawing on different disciplines: Macroeconomic agent-based models. Journal of Evolutionary Economics, 29(1), 39-66. doi:http://dx.doi.org.virtual.anu.edu.au/10.1007/s00191-018-0557-5

Hoffmann, C. H. (2017). Towards understanding dynamic complexity in financial systems Structure‐based explanatory modelling of risks. Systems Research and Behavioral Science, 34(6), 728-745. https://doi.org/10.1002/sres.2414

Hooijmaaijers, S., & Buiten, G., (2019). A methodology for estimating the Dutch interfirm trade network, including a breakdown by commodity, Centraal Bureau van Statistiek

Inoue, H., Todo, Y. (2019). Firm-level propagation of shocks through supply-chain networks. Nat Sustain 2, 841–847

Kashiwagi, Y., Todo, Y., & Matous, P. (2018). Propagation of economic shocks through global supply chains—Evidence from Hurricane Sandy. Review of International Economics. https://doi.org/10.1111/roie.12541

Kumar, A., Chakrabarti, A. S., Chakraborti, A., & Nandi, T. (2021). Distress propagation on production networks: Coarse-graining and modularity of linkages. Physics A, 568, 125714. https://doi.org/10.1016/j.physa.2020.125714

Kumar, S., Bansal, A., & Chakrabarti, A. S. (2020). Ripples on financial networks. The European Journal of Finance, 1-22. https://doi.org/10.1080/1351847X.2020.1835686

Lebacher, M., Cook, S., Klein, N., and Kauermann, G., (2019). In search of lost edges: a case study on reconstructing financial networks arXiv:1909.01274

LeBaron, B., & Tesfatsion, L. (2008). Modeling macroeconomies as open-ended dynamic systems of interacting agents. The American Economic Review, 98(2), 246-250. https://doi.org/10.1257/aer.98.2.246

Mazzarisi, P., and Lillo, F., (2017). Methods for Reconstructing Interbank Networks from Limited Information: A Comparison. 10.1007/978-3-319-47705-3_15. 

Mercure, J., Pollitt, H., Bassi, A. M., Viñuales, J. E., & Edwards, N. R. (2016). Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Global Environmental Change, 37, 102-115. https://doi.org/10.1016/j.gloenvcha.2016.02.003

Mitic, P. (2020). Systemic shock propagation in a complex system. Soft Comput 24, 13667–13685 https://doi.org/10.1007/s00500-019-04466-6

Organisation for Economic Cooperation and Development (2017). Debate the Issues: Complexity and policy making, OECD Insights, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264271531-en.

Pagan, A. (2019). Australian Macro-Econometric Models and Their Construction – A short History Centre for Applied Microeconomic Analyses Working Paper, Australian National University

Parisi, F., Squartini, T., & Garlaschelli, D. (2020). A faster horse on a safer trail: Generalized inference for the efficient reconstruction of weighted networks. New Journal of Physics, 22(5), 53053. https://doi.org/10.1088/1367-2630/ab74a7

Prime Minister & Cabinet (2021). Tracking progress to 2030, Australia’s Digital Economy retrieved from https://digitaleconomy.pmc.gov.au/strategy/tracking-progress

Prime Minister of Australia (2021). A modern digital economy to secure Australia’s future, Media release, retrieved September 1, 2020, https://www.pm.gov.au/media/modern-digital-economy-secure-australias-future

Productivity Commission (2021). Vulnerable Supply Chains, Productivity Commission Study Report, retrieved from https://www.pc.gov.au/inquiries/completed/supply-chains/report/supply-chains.pdf

Rachkov, A., Pijpers, F.P., Garlaschelli, D. (2021). Potential Biases in Network Reconstruction Methods Not Maximizing Entropy, Discussion Paper, Centraal Bureau van Statistiek https://www.cbs.nl/en-gb/background/2021/09/potential-biases-in-network-reconstruction-methods

Ramadiah, A., Caccioli, F., & Fricke, D. (2020). Reconstructing and stress testing credit networks. Journal of Economic Dynamics & Control, 111, 103817. https://doi.org/10.1016/j.jedc.2019.103817

Roberts, N.C. (2000). “Wicked Problems and Network Approaches to Resolution”, International Public Management Review, International Public Management Network https://journals.sfu.ca/ipmr/index.php/ipmr/article/view/175

Squartini, T., Almog, A., Caldarelli, G., Van Lelyveld, I., Garlaschelli, D., & Cimini, G. (2017). Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks. Physical Review. E, 96(3), 032315-032315. https://doi.org/10.1103/PhysRevE.96.032315

Squartini, T., Caldarelli, G., Cimini, G., Gabrielli, A., & Garlaschelli, D. (2018). Reconstruction methods for networks: The case of economic and financial systems. Physics Reports, 757, 1-47. https://doi.org/10.1016/j.physrep.2018.06.008

Squartini, T., Van Lelyveld, I., & Garlaschelli, D. (2013). Early-warning signals of topological collapse in interbank networks. Scientific Reports (Nature Publisher Group), 3, 3357.

Starnini M., Boguñá M., Serrano M.Á. (2019). The interconnected wealth of nations: Shock propagation on global trade-investment multiplex networks, Sci. Rep., 9 (1), pp. 1-10

Verschuur, J., Koks, E. E., & Hall, J. W. (2020). Port disruptions due to natural disasters: Insights into port and logistics resilience. Transportation Research. Part D, Transport and Environment, 85, 102393. https://doi.org/10.1016/j.trd.2020.102393

Related posts

Supply chain nightmare shows signs of improvement – here’s an update

scceu

Supply chain radar: FedEx, UPS know their trade but what next after Amazon? – theloadstar.com

scceu

Add Security And Supply Chain Trust To Your ASIC Or SoC with eFPGAs

scceu