Supply Chain Council of European Union | Scceu.org
Supply Chain Risk

Species-specific climate Suitable Conditions Index and dengue transmission in Guangdong, China | Parasites & Vectors

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6:e1760.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • WHO. Dengue and severe dengue. 2022. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed 15 October 2021

  • Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface. 2013;10:20130414.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guzman MG, Harris E. Dengue. Lancet. 2015;385:453–65.

    PubMed 
    Article 

    Google Scholar
     

  • Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8:S7–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Simmons CP, Farrar JJ, van Vinh CN, Wills B. Dengue. N Engl J Med. 2012;366:1423–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers. 2016;2:16055.

    PubMed 
    Article 

    Google Scholar
     

  • Xie H, Zhou H, Yang Y. Advances in the research on the primary dengue vector Aedes aegypti in China. Chin J Vector Biol Control. 2011;22:194–7 (in Chinese).


    Google Scholar
     

  • Dao-fang G, Hong-ning Z. Progress in Dengue fever important vector Aedes albopctus in China. Chin J Vector Biol Control. 2009;20:607–10 (in Chinese).


    Google Scholar
     

  • Wu F, Liu QY, Lu L, Wang JF, Song XP, Ren DS. Distribution of Aedes albopictus (Diptera: Culicidae) in Northwestern China. Vector-Borne Zoonotic Dis. 2011;11:1181–6.

    PubMed 
    Article 

    Google Scholar
     

  • Brady OJ, Hay SI. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol. 2020;65:191–208.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4:e646.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qiu F-X, Chen Q-Q, Ho Q-Y, Chen W-Z, Zhao Z-G, Zhao B-W. The first epidemic of dengue hemorrhagic fever in the People’s Republic of China. Am J Trop Med Hyg. 1991;44:364–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang F-C, Zhao H, Li L-H, Jiang T, Hong W-X, Wang J, et al. Severe dengue outbreak in Yunnan, China, 2013. Int J Infect Dis. 2014;27:4–6.

    PubMed 
    Article 

    Google Scholar
     

  • Wu J-Y, Lun Z-R, James AA, Chen X-G. Dengue fever in mainland China. Am J Trop Med Hyg. 2010;83:664.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peng H-J, Lai H-B, Zhang Q-L, Xu B-Y, Zhang H, Liu W-H, et al. A local outbreak of dengue caused by an imported case in Dongguan China. BMC Public Health. 2012;12:1–8.

    Article 

    Google Scholar
     

  • Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P. Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: evidence from a mathematical model. PLoS Negl Trop Dis. 2016;10:e0004417.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrera R, Amador M, MacKay AJ. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan. Puerto Rico PLoS Negl Trop Dis. 2011;5:e1378.

    PubMed 
    Article 

    Google Scholar
     

  • Campbell KM, Lin C, Iamsirithaworn S, Scott TW. The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg. 2013;89:1066.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Health Organization & Special Programme for Research and Training in Tropical Diseases & World Health Organization. Dept. of Control of Neglected Tropical Diseases & World Health Organization. Dept. of Epidemic and Pandemic Alert and Response Dengue : guidelines for diagnosis, treatment, prevention and control (New ed). World Health Organization, Geneva, 2009.

  • Chadee D. Dengue cases and Aedes aegypti indices in Trinidad West Indies. Acta Trop. 2009;112:174–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bowman LR, Runge-Ranzinger S, McCall P. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. 2014;8:e2848.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lin C-H, Wen T-H. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int J Environ Res Public Health. 2011;8:2798–815.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis. 2017;11:e0005568.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reiter P. Climate change and mosquito-borne disease. Environ Health Perspect. 2001;109:141–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Macoris M, Galvani K, Andrighetti M, Wanderley D. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect. 2009;137:1188–202.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tun-Lin W, Burkot T, Kay B. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland Australia. Med Vet Entomol. 2000;14:31–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kamimura K, Matsuse IT, Takahashi H, Komukai J, Fukuda T, Suzuki K, et al. Effect of temperature on the development of Aedes aegypti and Aedes albopictus. Med Entomol Zool. 2002;53:53–8.

    Article 

    Google Scholar
     

  • Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE. 2014;9:e87468.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mordecai EA, Cohen JM, Evans MV, Gudapati P, Johnson LR, Lippi CA, et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis. 2017;11:5568.

    Article 

    Google Scholar
     

  • Davis C, Murphy AK, Bambrick H, Devine GJ, Frentiu FD, Yakob L, et al. A regional suitable conditions index to forecast the impact of climate change on dengue vectorial capacity. Environ Res. 2021;195:110849.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • National Bureau of Statistics of China. Communiqué of the Seventh National Population Census [1] (No. 3)—population ry Region. 2021. http://www.stats.gov.cn/english/PressRelease/202105/t20210510_1817188.html. Accessed 15 October 2021

  • Liu K, Hou X, Ren Z, Lowe R, Wang Y, Li R, et al. Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China. Environ Res. 2020;183:109190.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lai S, Huang Z, Zhou H, Anders KL, Perkins TA, Yin W, et al. The changing epidemiology of dengue in China, 1990–2014: a descriptive analysis of 25 years of nationwide surveillance data. BMC Med. 2015;13:1–12.

    CAS 
    Article 

    Google Scholar
     

  • Ministry of Health of the People’s Republic of China. Diagnostic criteria for dengue fever (WS 216–2008). Beijing: People’s Medical Publishing House; 2008. p. 1–17 (in Chinese).


    Google Scholar
     

  • Zhengxing W, Chuang L, Alfredo H. From AVHRR-NDVI to MODIS-EVI: advances in vegetation index research. Acta Ecol Sin. 2003;23:979–87.


    Google Scholar
     

  • Didan K, Munoz AB, Solano R, Huete A. MODIS vegetation index user’s guide (MOD13 series). Vegetation Index and Phenology Lab. Tucson: University of Arizona; 2015.


    Google Scholar
     

  • Stata.com. xtnbreg—fixed-effects, random-effects, & population-averaged negative binomial models. https://www.stata.com/manuals/xtxtnbreg.pdf. Accessed 12 May 2021

  • Anselin L. Local indicators of spatial association—LISA. Geogr Anal. 1995;27:93–115.

    Article 

    Google Scholar
     

  • Chung YK, Pang FY. Dengue virus infection rate in field populations of female Aedes aegypti and Aedes albopictus in Singapore. Trop Med Int Health. 2002;7:322–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chow V, Chan Y, Yong R, Lee K, Lim L, Chung Y, et al. Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. Am J Trop Med Hyg. 1998;58:578–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu L, Stige LC, Chan K-S, Zhou J, Yang J, Sang S, et al. Climate variation drives dengue dynamics. Proc Natl Acad Sci USA. 2017;114:113–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB, et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci USA. 2015;112:11887–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu G, Liu T, Xiao J, Zhang B, Song T, Zhang Y, et al. Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Sci Total Environ. 2019;651:969–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu P-C, Lay J-G, Guo H-R, Lin C-Y, Lung S-C, Su H-J. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ. 2009;407:2224–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis. 2014;8:e3301.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wimberly MC, Davis JK, Evans MV, Hess A, Newberry PM, Solano-Asamoah N, et al. Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLoS Negl Trop Dis. 2020;14:e0008614.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan J, Rosario Y. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol. 2008;22:62–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thongsripong P, Green A, Kittayapong P, Kapan D, Wilcox B, Bennett S. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl Trop Dis. 2013;7:e2507.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Endy TP, Nisalak A, Chunsuttiwat S, Libraty DH, Green S, Rothman AL, et al. Spatial and temporal circulation of dengue virus serotypes: a prospective study of primary school children in Kamphaeng Phet Thailand. Am J Epidemiol. 2002;156:52–9.

    PubMed 
    Article 

    Google Scholar
     

  • Yang BY, Borgert BA, Alto BW, Boohene CK, Brew J, Deutsch K, et al. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. Plos Negl Trop Dis. 2021;15:e0009063.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsai P-J, Teng H-J. Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan. BMC Infect Dis. 2016;16:1–20.

    CAS 
    Article 

    Google Scholar
     

  • Chen B-J, Qin B, Bai A-y, Wu J, Deng H, Duan J-h, et al. An experimental study of interspecific competition between Aedes aegypti from Wushi town of Leizhou and Ae. albopictus from different places in Guangdong province, China. Chin J Vector Biol Control. 2020;31:486–9.

  • Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, et al. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Sci Total Environ. 2019;664:203–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, Scott RM, et al. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg. 2003;68:191–202.

    PubMed 
    Article 

    Google Scholar
     

  • Phan DQ, Nguyen LDN, Pham ST, Nguyen T, Pham PTT, Nguyen STH, et al. The distribution of dengue virus serotype in Quang Nam Province (Vietnam) during the outbreak in 2018. Int J Environ Res Public Health. 2022;19:1285.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Related posts

    Sluggish vaccine campaign raises specter of US dysfunction

    scceu

    Gov. Raimondo invokes government privileges in ATA toll lawsuit

    scceu

    Money and the moonshot | Euromoney

    scceu