Trung, T. Q. & Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28, 4338–4372. https://doi.org/10.1002/adma.201504244 (2016).
Liu, Q. et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring. Adv. Mater. Technol. 4, 1800594. https://doi.org/10.1002/admt.201800594 (2019).
Han, S. et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med.https://doi.org/10.1126/scitranslmed.aan4950 (2018).
Wang, Y. F. et al. Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-59432-2 (2020).
Youn, D. Y. et al. wireless real-time temperature monitoring of blood packages: Silver nanowire-embedded flexible temperature sensors. ACS Appl. Mater. Interfaces 10, 44678–44685. https://doi.org/10.1021/acsami.8b11928 (2018).
Li, Q., Zhang, L., Tao, X. & Ding, X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mater. 6, 1601371. https://doi.org/10.1002/adhm.201601371 (2017).
Koivikko, A., Raei, E. S., Mosallaei, M., Mäntysalo, M. & Sariola, V. Screen-printed curvature sensors for soft robots. IEEE Sens. J. 18, 223–230. https://doi.org/10.1109/JSEN.2017.2765745 (2018).
Harada, S. et al. Fully printed flexible fingerprint-like three-Axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 8, 12851–12857. https://doi.org/10.1021/nn506293y (2014).
Konishi, S. & Hirata, A. Flexible temperature sensor integrated with soft pneumatic microactuators for functional microfingers. Sci. Rep.https://doi.org/10.1038/s41598-019-52022-x (2016).
Nassar, J. M. et al. Compliant lightweight non-invasive standalone “Marine Skin’’ tagging system. npj Flexible Electronics 2, 13. https://doi.org/10.1038/s41528-018-0025-1 (2018).
Nassar, J. M. et al. Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flex. Electron. 2, 24. https://doi.org/10.1038/s41528-018-0039-8 (2018).
Farooqui, M. F., Karimi, M. A., Salama, K. N. & Shamim, A. 3D-printed disposable wireless sensors with integrated microelectronics for large area environmental monitoring. Adv. Mater. Technol. 2, 1700051. https://doi.org/10.1002/admt.201700051 (2017).
Hughes, G. et al. Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6, 50. https://doi.org/10.3390/bios6040050 (2016).
El-Atab, N. et al. Heterogeneous cubic multidimensional integrated circuit for water and food security in fish farming ponds. Small 16, 1905399. https://doi.org/10.1002/smll.201905399 (2020).
Tudorache, M. & Bala, C. Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal. Bioanal. Chem. 388, 565–578. https://doi.org/10.1007/s00216-007-1293-0 (2007).
Avramescu, A. et al. Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Anal. Bioanal. Chem. 374, 25–32. https://doi.org/10.1007/s00216-002-1312-0 (2002).
Ren, X. et al. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv. Mater. 28, 4832–4838. https://doi.org/10.1002/adma.201600040 (2016).
Amrouch, H. & Henkel, J. Lucid infrared thermography of thermally-constrained processors. In 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) 347–352. https://doi.org/10.1109/ISLPED.2015.7273538 (2015).
Zhang, J., Sadiqbatcha, S., O’Dea, M., Amrouch, H. & Tan, S. X.-D. Full-chip power density and thermal map characterization for commercial microprocessors under heat sink cooling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 1–1. https://doi.org/10.1109/TCAD.2021.3088081 (2021).
Khan, S., Lorenzelli, L. & Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 15, 3164–3185. https://doi.org/10.1109/JSEN.2014.2375203 (2015).
Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing-process and its applications. Adv. Mater. 22, 673–685. https://doi.org/10.1002/adma.200901141 (2010).
Moya, A., Gabriel, G., Villa, R. & Javier del Campo. F. Inkjet-printed electrochemical sensors https://doi.org/10.1016/j.coelec.2017.05.003 (2017).
Metters, J. P., Kadara, R. O. & Banks, C. E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 136, 1067–1076. https://doi.org/10.1039/c0an00894j (2011).
Chang, W.-Y. et al. Screen printing technology. Screen Print. 5, 178–183 (2009).
Zeng, Y. et al. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Sci. Rep. 4, 1–7. https://doi.org/10.1038/srep06684 (2014).
Rahman, M. T. et al. High performance flexible temperature sensors via nanoparticle printing. ACS Appl. Nano Mater. 2, 3280–3291. https://doi.org/10.1021/acsanm.9b00628 (2019).
Xin, Y., Zhou, J. & Lubineau, G. A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits. J. Mater. Chem. A 7, 24493–24501. https://doi.org/10.1039/c9ta07591g (2019).
Trung, T. Q., Ramasundaram, S., Hwang, B.-U. & Lee, N.-E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509. https://doi.org/10.1002/adma.201504441 (2016).
Katerinopoulou, D. et al. Large-area all-printed temperature sensing surfaces using novel composite thermistor materials. Adv. Electron. Mater. 5, 1800605. https://doi.org/10.1002/aelm.201800605 (2019).
Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. USA 112, 14533–14538. https://doi.org/10.1073/pnas.1515650112 (2015).
Wang, Z. et al. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators B 196, 357–369. https://doi.org/10.1016/J.SNB.2014.02.035 (2014).
Tan, Z. et al. Breathing-effect assisted transferring large-area PEDOT:PSS to PDMS substrate with robust adhesion for stable flexible pressure sensor. Composites Part A 143, 106299. https://doi.org/10.1016/J.COMPOSITESA.2021.106299 (2021).
Vuorinen, T., Niittynen, J., Kankkunen, T., Kraft, T. M. & Mäntysalo, M. Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 6, 1–8. https://doi.org/10.1038/srep35289 (2016).
Bali, C. et al. Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT: PSS. Mater. Today 3, 739–745. https://doi.org/10.1016/j.matpr.2016.02.005 (2016).
Hong, S. Y. et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 28, 930–935. https://doi.org/10.1002/adma.201504659 (2016).
Chen, Y., Lu, B., Chen, Y. & Feng, X. Breathable and stretchable temperature sensors inspired by skin. Sci. Rep. 5, 1–11. https://doi.org/10.1038/srep11505 (2015).
Dankoco, M. D., Tesfay, G. Y., Benevent, E. & Bendahan, M. Temperature sensor realized by inkjet printing process on flexible substrate. Mater. Sci. Eng. B 205, 1–5. https://doi.org/10.1016/j.mseb.2015.11.003 (2016).
Duby, S., Ramsey, B., Harrison, D. & Hay, G. Printed thermocouple devices. Proc. IEEE Sens. 3, 1098–1101. https://doi.org/10.1109/icsens.2004.1426367 (2004).
Knoll, M., Offenzeller, C., Mayrhofer, B., Jakoby, B. & Hilber, W. A screen printed thermocouple-array on a flexible substrate for condition monitoring. Proceedings 2, 803. https://doi.org/10.3390/proceedings2130803 (2018).
Infratec imageir 8300 series camera. https://www.infratec.eu/thermography/infrared-camera/imageir-8300/ (Accessed 06 July 2022).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Bengio, Y. & LeCun, Y. (eds.) 3rd International Conference on Learning Representations, , ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015).
Shih, W. P. et al. Flexible temperature sensor array based on a Graphite-Polydimethylsiloxane composite. Sensors 10, 3597–3610. https://doi.org/10.3390/s100403597 (2010).
Han, I. Y. & Kim, S. J. Diode temperature sensor array for measuring micro-scale surface temperatures with high resolution. Sens. Actuators A 141, 52–58. https://doi.org/10.1016/J.SNA.2007.07.020 (2008).
Kanao, K. et al. Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Adv. 5, 30170–30174. https://doi.org/10.1039/C5RA03110A (2015).
Yokotaa, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. USA 112, 14533–14538. https://doi.org/10.1073/pnas.1515650112 (2015).