Supply Chain Council of European Union | Scceu.org
Procurement

Prediction of mining-induced subsidence at Barapukuria longwall coal mine, Bangladesh

  • NSW, D. o. P. Impacts of underground coal mining on natural features in the Southern Coalfield: Strategic review. (New South Wales Government, Sydney, 2008).

  • Merad, M., Verdel, T., Roy, B. & Kouniali, S. Use of multi-criteria decision-aids for risk zoning and management of large area subjected to mining-induced hazards. Tunn. Undergr. Space Technol. 19, 125–138 (2004).

    Article 

    Google Scholar
     

  • Star, D. Fresh cracks in many houses. (Daily star , Dhaka, 2016). Preprint at https://www.thedailystar.net/country/fresh-cracks-many-houses-1322431

  • BDNEWS24, 2016. Barapukuria coal mine: Cracks in houses in surrounding sreas, lakes dring up, Dhaka: BDNEWS24.COM.

  • Board, N. C. Subsidence Engineering Handbook. (London, National coal board: Mining Department, 1975).

  • Whittaker, B. N. & Reddish, D. J. Subsidence: Occurrence, Prediction and Control (Nottingham, ELSEVIER, 1989).

  • Ren, G., Reddish, D. & Whittaker, B. Mining subsidence and displacement prediction. Mining Sci. Technol. 5, 89–104 (1987).

    Article 

    Google Scholar
     

  • Sheorey, P., Loui, J., Singh, K. & Singh, S. Ground subsidence observations and a modified influence function method for complete subsidence prediction. Int. J. Rock Mech. Min. Sci. 37, 801–818 (2000).

    Article 

    Google Scholar
     

  • Ahmed S. M., Razo & Alam, B. Mining induced subsidence prediction by emperical methods of Barapukuria longwalll coal mine Bangladesh. Dhaka: PP_ICPE 2019 (BUET), Bangladesh (2019).

  • Sepehri, M., Apel, D. B. & Hall, R. A. Prediction of mining-induced surface subsidence and ground movements at a Canadian diamond mine using an elastoplastic finite element model. Int. J. Rock Mech. Min. Sci. 100, 73–82 (2017).

    Article 

    Google Scholar
     

  • Esterhuizen, G. S., Gearhart, D. F., Klemetti, T., Dougherty, H. & Dyke, M. V. Analysis of gateroad stability at two longwall mines based on field monitoring results and numerical model analysis. Int. J. Min. Sci. Technol. 29, 35–43 (2019).

    Article 

    Google Scholar
     

  • Zhang, Z., Mei, G. & Xu, N. A geometrically and locally adaptive remeshing method for finite difference modeling of mining-induced surface subsidence. J. Rock Mech. Geotech. Eng. 14, 219–231 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ghabraie, B., Ren, G., Zhang, X. & Smith, J. Physical modelling of subsidence from sequential extraction of partially overlapping longwall panels and study of substrata movement characteristics. Int. J. Coal Geol. 140, 71–83 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Unlu, T., Akcin, H. & Yilmaz, O. An integrated approach for the prediction of subsidence for coal mining basins. Eng. Geol. 166, 186–203 (2013).

    Article 

    Google Scholar
     

  • Cao, J., Huang, Q. & Guo, L. Subsidence prediction of overburden strata and ground surface in shallow coal seam mining. Sci. Rep. 11, 18972. https://doi.org/10.1038/s41598-021-98520-9 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crouch, S. & Fairhurst, C. The mechanics of coal mine bumps and the interaction between coal pillars, Mine Roof, and Floor. USMB Contact Report (1973).

  • Imam, B. Energy resources of Bangladesh (University Grants Commision of Bangladesh, 2013).


    Google Scholar
     

  • Khan, F. H. Geology of Bangladesh (The University Press Limited, 1991).


    Google Scholar
     

  • Armstrong, L. W. Techno-economic feasibility study, Barapukuria coal project, Dinajpur, Bangladesh (Bangladesh GOVT (Unpublished), Dhaka, 1991).


    Google Scholar
     

  • Bakr, M. Geology and coal deposit of Barapukuria basin, Dinajpur District, Bangladesh (Geological Survey of Bangladesh, 1996).


    Google Scholar
     

  • BCMCL. Mining report. (Unpublished, Barapukuria, 2020).

  • Google. www.google.com/maps/,” Google, [Online]. (Available: https://www.google.com. Accessed 11 01 2020).

  • BCMCL. Mine design in Auto CAD. (Unpublished, Dinajpur, 2020).

  • Zhang, Z., Xu, X., Sun, Q. & Dong, Y. Effect of thermal treatment on fractals in acoustic emission of rock material. Adv. Mater. Sci. Eng. 2016, 1–9 (2016).


    Google Scholar
     

  • Zhang, Y. et al. Thermomechanical behavior of late Indo-Chinese granodiorite under high temperature and pressure. J. Eng. 2018, 1–15 (2018).


    Google Scholar
     

  • Huges, D. & Jones, H. Variation of elastic moduli of igneous rocks with pressure and temperature. Bull. Geol. Soc. Am. 61, 843–856 (1950).

    Article 

    Google Scholar
     

  • Liu, W., Zhang, L. & Luo, N. Elastic modulus evolution of rocks under heating–cooling cycles. Sci. Rep. 10, 13835 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Suknev, S. Influence of temperature and water content on elastic properties of hard rocks in thaw/freeze state transition. J. Min. Sci. 55, 185–193 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Gutenberg, B. Elastic constants, and elastic processes in the earth. Physics of the earth’s interior, Elsevier, 165–184 (1959).

  • Zhang, D., Gamage, R. P., Perera, M. S. A., Zhang, C. & Wanniarachchi, W. A. M. Influence of water saturation on the mechanical behaviour of low-permeability reservoir rocks. Energies 236(10), 1–19 (2017).


    Google Scholar
     

  • Makhnenko, R. Y. & Labuz, J. F. Elastic and inelastic deformation of fluid-saturated rock. Philosophical Transactions;The Royal Society A 374(20150422), 1–22 (2016).

  • Davy, P., Darcel, C., Goc, R. L. & Ivars, D. M. Elastic properties of fractured rock masses with frictional properties and power law fracture size distributions. J. Geophys. Res.: Solid Earth 123, 1–18 (2018).


    Google Scholar
     

  • Alam, B., Fujii, Y., Fukuda, D., Kodama, J.-I. & Kaneko, K. Fractured rock permeability as a function of temperature and confining pressure. Pure Appl. Geophys. 172, 2871–2889 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Davarpanah, M., Somodi, M., Kovacs, L. & Vasa. Complex analysis of uniaxial compressive tests of the Moragy granite rock formation (Hungary) studio. Studia Geotechnica et Mechanica 41(1), 21–32 (2019).

  • Oga, K. Potential of carbon dioxide storage in the gob area of the abandoned coal mine. Horonobe, Japan, MMIJ Fall Meeting, A6-7 (2014 in Japanese).

  • Jalili, P., Saydam, S. & Cinar, Y. CO2 storage in abandoned coal mines. Wollongong, University of Wollongong & Australasian Institue of Mining and Metallurgy, 355–360 (2011).

  • Zhang, X. et al. Investigation of hydrolic-mechanical properties of paste backfill containing coal gauge-fly ash and its application in an underground coal mine. Energies 10, 1309 (2017).

    Article 

    Google Scholar
     

  • Related posts

    Procurement Analytics Market 2020: Potential Growth,

    scceu

    Inside Housing – Insight – Grenfell Tower Inquiry diary week 80: ‘The evidence points to wilful blindness and complacency towards safety’

    scceu

    Veritiv (VRTV) Q4 2019 Earnings Call Transcript

    scceu