Supply Chain Council of European Union | Scceu.org
Procurement

Land use change and carbon emissions of a transformation to timber cities

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Kraas, F. et al. Humanity on The Move: Unlocking the Transformative Power of Cities (WBGU-German Advisory Council on Global Change, 2016).

  • Ge, M., Friedrich, J. & Vigna, L. 4 Charts Explain Greenhouse Gas Emissions by Countries and Sectors. World Resources Institute. Available at: https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-countries-and-sectors. (Accessed: 18th September 2021).

  • Cao, Z. et al. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11, 1–9 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Pomponi, F., Hart, J., Arehart, J. H. & D’Amico, B. Buildings as a global carbon sink? a reality check on feasibility limits. One Earth 3, 157–161 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article 

    Google Scholar
     

  • Muüller, D. B. et al. Carbon emissions of infrastructure development. Environ. Sci. Technol. 47, 11739–11746 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Hertwich, E. G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14, 151–155 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jürgensen, C., Kollert, W. & Lebedys, A.Assessment of industrial roundwood production from planted forests. Planted Forests and Trees Working Papers (FAO) eng no. FP/48/E. (The Food and Agricultural Organization of the United Nations, 2014).

  • Pirard, R., Dal Secco, L. & Warman, R. Do timber plantations contribute to forest conservation? Environ. Sci. Policy 57, 122–130 (2016).

    Article 

    Google Scholar
     

  • Mishra, A. et al. Estimating global land system impacts of timber plantations using magpie 4.3.5. Geoscientific Model Dev. Discussions 14, 6467–6494 (2021).

  • Martin, P. A., Newton, A. C., Pfeifer, M., Khoo, M. & Bullock, J. M. Impacts of tropical selective logging on carbon storage and tree species richness: a meta-analysis. Forest Ecol. Managn. 356, 224–233 (2015).

    Article 

    Google Scholar
     

  • Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 1–10 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Burivalova, Z., Şekercioğlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).

    Article 

    Google Scholar
     

  • Carle, J. & Holmgren, P. Wood from planted forests. Forest Products J. 58, 6 (2008).


    Google Scholar
     

  • Yousefpour, R., Nabel, J. E. & Pongratz, J. Simulating growth-based harvest adaptive to future climate change. Biogeosciences 16, 241–254 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bodirsky, B. L. et al. mrcommons: MadRat commons Input Data Library. R package version 0.41.8. https://github.com/pik-piam/mrcommons. (2021).

  • Dietrich, J. P. et al. Magpie 4—a modular open-source framework for modeling global land systems. Geoscientific Model Dev. 12, 1299–1317 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricult. Econ. 39, 325–338 (2008).


    Google Scholar
     

  • FAO. Global Forest Resources Assessment 2020: Main report. http://www.fao.org/documents/card/en/c/ca9825en (FAO, 2020).

  • Dietrich, J. P. et al. Measuring agricultural land-use intensity–a global analysis using a model-assisted approach. Ecol. Modelling 232, 109–118 (2012).

    Article 

    Google Scholar
     

  • Brunet-Navarro, P., Jochheim, H., Cardellini, G., Richter, K. & Muys, B. Climate mitigation by energy and material substitution of wood products has an expiry date. J. Cleaner Product. 303, 127026 (2021).

    Article 

    Google Scholar
     

  • Van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article 

    Google Scholar
     

  • Fujimori, S. et al. Ssp3: Aim implementation of shared socioeconomic pathways. Glob. Environ. Change 42, 268–283 (2017).

    Article 

    Google Scholar
     

  • Smith, P. et al. Biophysical and economic limits to negative co2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roe, S. et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob. Change Biol. 27, 6025–6058 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Roe, S. et al. Contribution of the land sector to a 1.5 c world. Nat. Clim. Change 9, 817–828 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hyvönen, R. et al. The likely impact of elevated [co2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist 173, 463–480 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. et al. Greening of the earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tian, X., Sohngen, B., Kim, J. B., Ohrel, S. & Cole, J. Global climate change impacts on forests and markets. Environ. Res. Lett. 11, 035011 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Ramage, M. H. et al. The wood from the trees: the use of timber in construction. Renewable Sustain. Energy Rev. 68, 333–359 (2017).

    Article 

    Google Scholar
     

  • Adhikari, S., Quesada, H., Bond, B. & Hammett, T. Potential of hardwood lumber in cross laminated timber in North America: a CLT manufacturer’s perspective. Mass Timber Construction J. 3, 1–9 (2020).


    Google Scholar
     

  • Buehlmann, U., Bumgardner, M. & Alderman, D. Recent developments in us hardwood lumber markets and linkages to housing construction. Curr. Forestry Rep. 3, 213–222 (2017).

    Article 

    Google Scholar
     

  • Van Acker, J. C., Jiang, X. & Van den Bulcke, J. B. Innovative approaches to increase service life of poplar lightweight hardwood construction products. In XV International Conference on Durability of Building Materials and Components (eds Serrat, C., Casas, J. R. & Gibert, V.) 1487–1494 (DBMC, 2020).

  • Glavinić, I. U., Boko, I., Torić, N. & Vranković, J. L. Application of hardwood for glued laminated timber in Europe. J. Croation Assoc. Civil Eng. 72, 607–616 (2020).


    Google Scholar
     

  • Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 1–8 (2015).

    ADS 

    Google Scholar
     

  • Amiri, A., Ottelin, J., Sorvari, J. & Junnila, S. Cities as carbon sinks-classification of wooden buildings. Environ. Res. Lett. 15, 094076 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Connolly, T., Loss, C., Iqbal, A. & Tannert, T. Feasibility study of mass-timber cores for the UBC tall wood building. Buildings 8, 98 (2018).

    Article 

    Google Scholar
     

  • Harte, A. M. Mass timber–the emergence of a modern construction material. J. Struct. Integrity Maintenance 2, 121–132 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Pei, S. et al. Experimental seismic response of a resilient 2-story mass-timber building with post-tensioned rocking walls. J. Struct. Eng. 145, 04019120 (2019).

    Article 

    Google Scholar
     

  • Crawford, R. H. & Cadorel, X. A framework for assessing the environmental benefits of mass timber construction. Procedia Eng. 196, 838–846 (2017).

    Article 

    Google Scholar
     

  • IPCC. Climate change 2021: The physical science basis. in Intergovernmental Panel on Climate Change (IPCC) (Cambridge University Press, 2007).

  • Graham, V. et al. Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Sci. Rep. 11, 1–12 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land co2 sink. Science 348, 895–899 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stoy, P. C. et al. Opportunities and trade-offs among BECCS and the food, water, energy, biodiversity, and social systems nexus at regional scales. BioScience 68, 100–111 (2018).

    Article 

    Google Scholar
     

  • Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Sörgel, B. et al. A sustainable development pathway for climate action within the un 2030 agenda. Nat. Clim. Change 11, 656–664 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Organschi, A., Ruff, A., Oliver, C. D., Carbone, C. & Herrmann, E. Timber city: Growing an urban carbon sink with glue, screws, and cellulose fiber. in World Conference on Timber Engineering (WCTE) 2016, 5612–5621 (WCTE, 2016).

  • Moncaster, A., Pomponi, F., Symons, K. & Guthrie, P. Why method matters: temporal, spatial and physical variations in LCA and their impact on choice of structural system. Energy Build. 173, 389–398 (2018).

    Article 

    Google Scholar
     

  • Werner, F., Taverna, R., Hofer, P. & Richter, K. Greenhouse gas dynamics of an increased use of wood in buildings in Switzerland. Clim. Change 74, 319–347 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lundmark, T. et al. Potential roles of Swedish forestry in the context of climate change mitigation. Forests 5, 557–578 (2014).

    Article 

    Google Scholar
     

  • Eriksson, L. O. et al. Climate change mitigation through increased wood use in the European construction sector-towards an integrated modelling framework. Euro. J. Forest Res. 131, 131–144 (2012).

    Article 

    Google Scholar
     

  • Oliver, C. D., Nassar, N. T., Lippke, B. R. & McCarter, J. B. Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J. Sustain. Forestry 33, 248–275 (2014).

    Article 

    Google Scholar
     

  • Dietrich, J. P. et al. Magpie—an open source land-use modeling framework—version 4.3.2. https://github.com/magpiemodel/magpie (2021).

  • Dietrich, J. P., Popp, A. & Lotze-Campen, H. Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecol. Modelling 263, 233–243 (2013).

    Article 

    Google Scholar
     

  • Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Humpenöder, F. et al. Investigating afforestation and bioenergy ccs as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Braakhekke, M. C. et al. Modeling forest plantations for carbon uptake with the lpjml dynamic global vegetation model. Earth Syst. Dyn. 10, 617–630 (2019).

    ADS 
    Article 

    Google Scholar
     

  • MacDicken, K. G. Global forest resources assessment 2015: what, why and how? Forest Ecol. Managn. 352, 3–8 (2015).

    Article 

    Google Scholar
     

  • Keenan, R. J. et al. Dynamics of global forest area: Results from the fao global forest resources assessment 2015. Forest Ecol. Managn. 352, 9–20 (2015).

    Article 

    Google Scholar
     

  • Hurtt, G. C. et al. Luh2: harmonization of global land-use scenarios for the period 850-2100. AGUFM 2018, GC13A–01 (2018).


    Google Scholar
     

  • Poulter, B. et al. The global forest age dataset and its uncertainties (gfadv1. 1). (NASA National Aeronautics and Space Administration, PANGAEA, 2019).

  • Schmitz, C. et al. Trading more food: implications for land use, greenhouse gas emissions, and the food system. Glob. Environ. Change 22, 189–209 (2012).

    Article 

    Google Scholar
     

  • Wang, X. et al. Taking account of governance: implications for land-use dynamics, food prices, and trade patterns. Ecol. Econ. 122, 12–24 (2016).

    Article 

    Google Scholar
     

  • Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article 

    Google Scholar
     

  • Wang, X. et al. Beyond land-use intensity: assessing future global crop productivity growth under different socioeconomic pathways. Technol. Forecasting Soc. Change 160, 120208 (2020).

    Article 

    Google Scholar
     

  • Stevanović, M. et al. The impact of high-end climate change on agricultural welfare. Sci. Adv. 2, e1501452 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).

  • Anderson, J. & Moncaster, A. Embodied carbon of concrete in buildings, part 1: analysis of published EPD. Build. Cities 1, 198–217 (2020).

  • Smyth, C. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Churkina, G. Can Use of Wood in Future Infrastructure Development Reduce Emissions of CO2? Expertise für das WBGU-Sondergutachten “Entwicklung und Gerechtigkeit durch Transformation: Die vier großen I”. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (2016).

  • Bodirsky, B. L. et al. magpie4: MAgPIE outputs R package for MAgPIE version 4.x. R package version 1.83.3. https://github.com/pik-piam/magpie4 (2021).

  • Johnston, C. M. & Radeloff, V. C. Global mitigation potential of carbon stored in harvested wood products. Proc. Natl Acad. Sci. USA 116, 14526–14531 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pilli, R., Fiorese, G. & Grassi, G. Eu mitigation potential of harvested wood products. Carbon Balance Managn. 10, 1–16 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Mishra, A. et al. Data repository—transition to timber cities can help reduce carbon emissions without increasing competition for land. https://doi.org/10.5281/zenodo.6551229 (2022).

  • Mishra, A. & Humpenöder, F. MAgPIE model—transition to timber cities can help reduce carbon emissions without increasing competition for land. https://doi.org/10.5281/zenodo.6643301 (2022).

  • Dietrich, J. P. et al. MAgPIE—an open source land-use modeling framework. https://doi.org/10.5281/zenodo.6653242 (2021).

  • Related posts

    Why Procurement Must Go Beyond Spend Analytics

    scceu

    Global Processed Meat Sourcing and Procurement Report with Top Suppliers, Supplier Evaluation Metrics, and Procurement Strategies

    scceu

    EU has ‘shut its eyes’ to resource reduction says Zero Waste Europe

    scceu