Supply Chain Council of European Union | Scceu.org
Procurement

Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12

  • 1.

    Sustainable Development Goals: 17 Goals to Transform our World (United Nations, 2015).

  • 2.

    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    CAS 

    Google Scholar
     

  • 3.

    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    CAS 

    Google Scholar
     

  • 4.

    Steininger, K. W., Lininger, C., Meyer, L. H., Muñoz, P. & Schinko, T. Multiple carbon accounting to support just and effective climate policies. Nat. Clim. Change 6, 35–41 (2016).


    Google Scholar
     

  • 5.

    Afionis, S., Sakai, M., Scott, K., Barrett, J. & Gouldson, A. Consumption‐based carbon accounting: does it have a future? Wiley Interdiscip. Rev. Clim. Change 8, e438 (2017).


    Google Scholar
     

  • 6.

    IAEG-SDGs—Tier Classification for Global SDG Indicators (United Nations, 2019).

  • 7.

    Tier Classification for Global SDG Indicators (United Nations, 2021).

  • 8.

    Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).


    Google Scholar
     

  • 9.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    CAS 

    Google Scholar
     

  • 10.

    Handbook on Supply, Use and Input–Output Tables with Extensions and Applications (UNSD, 2018).

  • 11.

    Giljum, S., Bruckner, M. & Martinez, A. Material footprint assessment in a global input–output framework. J. Ind. Ecol. 19, 792–804 (2015).


    Google Scholar
     

  • 12.

    Wu, R., Geng, Y. & Liu, W. Trends of natural resource footprints in the BRIC (Brazil, Russia, India and China) countries. J. Clean. Prod. 142, 775–782 (2017).


    Google Scholar
     

  • 13.

    Pothen, F. A structural decomposition of global raw material consumption. Ecol. Econ. 141, 154–165 (2017).


    Google Scholar
     

  • 14.

    Giljum, S. et al. Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. J. Econ. Struct. 5, 17 (2016).


    Google Scholar
     

  • 15.

    Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).


    Google Scholar
     

  • 16.

    Steinmann, Z. J. N. et al. Headline environmental indicators revisited with the global multi‐regional input–output database EXIOBASE. J. Ind. Ecol. 22, 565–573 (2018).


    Google Scholar
     

  • 17.

    Bjelle, E. L. et al. Adding country resolution to EXIOBASE: impacts on land use embodied in trade. J. Econ. Struct. 9, 14 (2020).


    Google Scholar
     

  • 18.

    Lutter, S., Giljum, S. & Bruckner, M. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127, 1–10 (2016).


    Google Scholar
     

  • 19.

    Eisenmenger, N. et al. Consumption-based material flow indicators—comparing six ways of calculating the Austrian raw material consumption providing six results. Ecol. Econ. 128, 177–186 (2016).


    Google Scholar
     

  • 20.

    Bringezu, S. in Managing Water, Soil and Waste Resources to Achieve Sustainable Development Goals: Monitoring and Implementation of Integrated Resources Management (eds Hülsmann, S. & Ardakanian, R.) 11–34 (Springer, 2018).

  • 21.

    Giljum, S. et al. The impacts of data deviations between MRIO models on material footprints: a comparison of EXIOBASE, Eora, and ICIO. J. Ind. Ecol. 23, 946–958 (2019).


    Google Scholar
     

  • 22.

    Teixidó-Figueras, J. et al. International inequality of environmental pressures: decomposition and comparative analysis. Ecol. Indic. 62, 163–173 (2016).


    Google Scholar
     

  • 23.

    Schaffartzik, A., Duro, J. A. & Krausmann, F. Global appropriation of resources causes high international material inequality—growth is not the solution. Ecol. Econ. 163, 9–19 (2019).


    Google Scholar
     

  • 24.

    Södersten, C.-J., Wood, R. & Wiedmann, T. The capital load of global material footprints. Resour. Conserv. Recycl. 158, 104811 (2020).


    Google Scholar
     

  • 25.

    Berrill, P., Miller, T. R., Kondo, Y. & Hertwich, E. G. Capital in the American carbon, energy, and material footprint. J. Ind. Ecol. 24, 589–600 (2020).


    Google Scholar
     

  • 26.

    Jin, Y., Wang, H., Fry, J., Wang, Y. & Lenzen, M. Material footprints of Chinese megacities. Resour. Conserv. Recycl. 174, 105758 (2021).


    Google Scholar
     

  • 27.

    Ye, Q. et al. Linking the environmental pressures of China’s capital development to global final consumption of the past decades and into the future. J. Environ. Sci. Technol. 55, 6421–6429 (2021).

    CAS 

    Google Scholar
     

  • 28.

    Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).


    Google Scholar
     

  • 29.

    Fix, B. Dematerialization through services: evaluating the evidence. BioPhys. Econ. Resour. Qual. 4, 6 (2019).


    Google Scholar
     

  • 30.

    Capellán-Pérez, I., de Castro, C. & Miguel González, L. J. Dynamic energy return on energy investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 26, 100399 (2019).


    Google Scholar
     

  • 31.

    Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).


    Google Scholar
     

  • 32.

    Piñero, P., Heikkinen, M., Mäenpää, I. & Pongrácz, E. Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland. Ecol. Econ. 119, 217–229 (2015).

  • 33.

    de Koning, A. et al. Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecol. Econ. 116, 289–299 (2015).

  • 34.

    Kovanda, J., Weinzettel, J. & Schoer, K. What makes the difference in raw material equivalents calculation through environmentally extended input–output analysis? Ecol. Econ. 149, 80–87 (2018).


    Google Scholar
     

  • 35.

    Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: implications for resource efficiency. J. Ind. Ecol. 22, 553–564 (2018).


    Google Scholar
     

  • 36.

    Cibulka, S. & Giljum, S. Towards a comprehensive framework of the relationships between resource footprints, quality of life, and economic development. Sustainability https://doi.org/10.3390/su12114734 (2020).

  • 37.

    Zheng, X., Wang, R., Wood, R., Wang, C. & Hertwich, E. G. High sensitivity of metal footprint to national GDP in part explained by capital formation. Nat. Geosci. 11, 269–273 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Links Between Business Accounting and National Accounting (UNSD, 2000).

  • 39.

    Bringezu, S. et al. Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8, 778 (2016).


    Google Scholar
     

  • 40.

    European Parliament Resolution of 10 February 2021 on the New Circular Economy Action Plan 2020/2077(INI) (European Parliament, 2021).

  • 41.

    Ekvall, T., Hirschnitz-Garbers, M., Eboli, F. & Śniegocki, A. A systemic and systematic approach to the development of a policy mix for material resource efficiency. Sustainability 8, 373 (2016).


    Google Scholar
     

  • 42.

    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. J. Environ. Res. Lett. 15, 093001 (2020).

    CAS 

    Google Scholar
     

  • 43.

    Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2, 361–369 (2017).


    Google Scholar
     

  • 44.

    Bolea, L., Duarte, R. & Sanchez-Choliz, J. Exploring carbon emissions and international inequality in a globalized world: a multiregional-multisectoral perspective. Resour. Conserv. Recycl. 152, 104516 (2020).


    Google Scholar
     

  • 45.

    Wang, H. & Zhou, P. Assessing global CO2 emission inequality from consumption perspective: an index decomposition analysis. J. Ecol. Econ. 154, 257–271 (2018).


    Google Scholar
     

  • 46.

    Leontief, W. Input–Output Economics (Oxford Univ. Press, 1966).

  • 47.

    Leontief, W. in Studies in the Structure of the American Economy (eds Leontief, W. et al.) 93–115 (Oxford Univ. Press, 1953).

  • 48.

    Leontief, W. W. & Strout, A. A. in Structural Interdependence and Economic Development (ed. Barna, T.) 119–149 (Macmillan, 1963).

  • 49.

    Isard, W. Interregional and regional input–output analysis, a model of a space economy. Rev. Econ. Stat. 33, 318–328 (1951).


    Google Scholar
     

  • 50.

    Leontief, W. Structure of the world economy: outline of a simple input–output formulation. Am. Econ. Rev. 64, 823–834 (1974).


    Google Scholar
     

  • 51.

    Tukker, A. & Dietzenbacher, E. Global multiregional input–output frameworks: an introduction and outlook. Econ. Syst. Res. 25, 1–19 (2013).


    Google Scholar
     

  • 52.

    Murray, J. & Lenzen, M. The Sustainability Practitioner’s Guide to Multi-Regional Input–Output Analysis (Common Ground, 2013).

  • 53.

    Kanemoto, K. & Murray, J. in The Sustainability Practitioner’s Guide to Input-Output Analysis (eds Murray, J. & Wood, R.) 167–178 (Common Ground, 2010).

  • 54.

    Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS 

    Google Scholar
     

  • 55.

    Leontief, W. & Ford, D. Environmental repercussions and the economic structure: an input–output approach. Rev. Econ. Stat. 52, 262–271 (1970).


    Google Scholar
     

  • 56.

    Isard, W. et al. On the linkage of socio-economic and ecologic systems. Pap. Reg. Sci. Assoc. 21, 79–99 (1967).


    Google Scholar
     

  • 57.

    SDG Indicators: Metadata Repository (UNSD, 2018); https://unstats.un.org/sdgs/metadata/

  • 58.

    Material Footprint, Material Footprint per Capita, and Material Footprint per GDP Indicator 8.4.1 (UNSD, 2018); https://unstats.un.org/sdgs/metadata/files/Metadata-08-04-01.pdf

  • 59.

    Material Footprint, Material Footprint per Capita, and Material Footprint per GDP Indicator 12.2.1 (UNSD, 2018); https://unstats.un.org/sdgs/metadata/files/Metadata-12-02-01.pdf

  • 60.

    System of Environmental-Economic Accounting 2012: Applications and Extensions (United Nations, 2017); https://seea.un.org/sites/seea.un.org/files/ae_final_en.pdf

  • 61.

    System of Environmental-Economic Accounting 2012: Applications and Extensions; 85–87 (United Nations, 2017); https://seea.un.org/sites/seea.un.org/files/ae_final_en.pdf

  • 62.

    System of Environmental-Economic Accounting 2012: Applications and Extensions; 45–59 (United Nations, 2017); https://seea.un.org/sites/seea.un.org/files/ae_final_en.pdf

  • 63.

    Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).


    Google Scholar
     

  • 64.

    Global Material Flows Database Version 2021 (UN IRP, 2021).

  • 65.

    Geschke, A. & Hadjikakou, M. Virtual laboratories and MRIO analysis—an introduction. Econ. Syst. Res. 29, 143–157 (2017).


    Google Scholar
     

  • 66.

    Lenzen, M. et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).


    Google Scholar
     

  • 67.

    Lenzen, M. et al. New multi-regional input–output databases for Australia—enabling timely and flexible regional analysis. Econ. Syst. Res. 29, 275–295 (2017).


    Google Scholar
     

  • 68.

    Wiedmann, T. An input–output virtual laboratory in practice—survey of uptake, usage and applications of the first operational IELab. Econ. Syst. Res. 29, 296–312 (2017).


    Google Scholar
     

  • 69.

    Global Material Flows and Resource Productivity: Assessment Report for the UNEP International Resource Panel (UNEP, 2016).

  • 70.

    Technical Annex for Global Material Flows Database (UN IRP, 2018); http://www.csiro.au/~/media/LWF/Files/CES-Material-Flows_db/Technical-annex-for-Global-Material-Flows-Database.pdf

  • 71.

    Inomata, S. & Owen, A. Comparative evaluation of MRIO databases. Econ. Syst. Res. 26, 239–244 (2014).


    Google Scholar
     

  • 72.

    Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).


    Google Scholar
     

  • 73.

    Lenzen, M. et al. The carbon footprint of global tourism. Nat. Clim. Change 8, 522–528 (2018).


    Google Scholar
     

  • Related posts

    KY EMA provides update on affected counties, supply donations, volunteers

    scceu

    Global Payment As A Service (PaaS) Market Booming Despite Current Economic and Health Crisis

    scceu

    Clothing And Clothing Accessories Stores Global Market

    scceu