Supply Chain Council of European Union | Scceu.org
Procurement

High generation of reactive oxygen species from neutrophils in patients with severe COVID-19

  • Jordan, R. E. & Adab, P. Cheng KK (2020) COVID-19: Risk factors for severe disease and death. BMJ 368, m1198. https://doi.org/10.1136/bmj.m1198 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gordon, A. C. et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N. Engl. J. Med. 384, 1491–502. https://doi.org/10.1056/NEJMoa2100433 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mocsai, A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J. Exp. Med. 210, 1283–1299 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Kruger, P. et al. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog. 11(3), e1004651. https://doi.org/10.1371/journal.ppat.1004651 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Liu, C. & Mao, Z. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: A systematic review and meta-analysis. Crit. Care 24, 647 (2020).

    Article 

    Google Scholar
     

  • Chiang, C.-C., Korinek, M., Cheng, W.-J. & Hwang, T.-S. Targeting neutrophils to treat acute respiratory distress syndrome in coronavirus disease. Front. Pharmacol. 11, 572009. https://doi.org/10.3389/fphar.2020.572009 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, A. S. & Rout, A. Use of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in COVID-19. J. Clin. Med. Res. 12(7), 448–53. https://doi.org/10.14740/jocmr4240 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, X., Fan, Q. & Wang, L. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220. https://doi.org/10.1038/s41586-020-2180-5 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ghahramani, S. et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur. J. Med. Res. 25(1), 30. https://doi.org/10.1186/s40001-020-00432-3 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagunas-Rangel, F. A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J. Med. Virol. 92(10), 1733–1734. https://doi.org/10.1002/jmv.25819 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Laforge, M. et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol. 20, 515–516 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fox, S. E. et al. Pulmonary and cardiac pathology in COVID-19: The first autopsy series from New Orleans. Lancet Respir. Med. 8, 681–6. https://doi.org/10.1016/S2213-2600(20)30243-5 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, X. H. et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi 49(5), 411–417. https://doi.org/10.3760/cma.j.cn112151-20200312-00193 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Barnes, B. J. et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med. 217, e2020065. https://doi.org/10.1084/jem.20200652 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Golonka, R. M. et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol. Genom. 52(5), 217–221. https://doi.org/10.1152/physiolgenomics.00033.2020 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Dupre-Crochet, S., Erard, M. & Nüβe, O. ROS production in phagocytes: Why, when, and where?. J. Leukoc. Biol. 94, 657–670. https://doi.org/10.1189/jlb.1012544 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, G. T., Green, E. R. & Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell Infect. Microbiol. 7, 373. https://doi.org/10.3389/fcimb.2017.00373 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189. https://doi.org/10.1038/nri1312 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karlsson-Bengtsson, A., Nixon, J. & McPhail, L. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: Dependent or independent of phosphatidylinositol 3-kinase. J. Leukoc. Biol. 67, 396–404. https://doi.org/10.1002/jlb.67.3.396 (2000).

    Article 

    Google Scholar
     

  • Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13(5), 349–61. https://doi.org/10.1038/nri3423 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkmann, V., Laube, B., Abu Abed, U., Goosmann, C. & Zychlinksky, A. Neutrophil extracellular traps: How to generate and visualize them. J. Vis. Exp. 36, e1724. https://doi.org/10.3791/1724 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Naik, E. & Dixit, V. M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 208(3), 417–420. https://doi.org/10.1084/jem.20110367 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheshachalam, A., Srivastava, N., Mitchell, T., Lacy, P. & Eitzen, G. Granule protein processing and regulated secretion in neutrophils. Front. Immunol. 5, 448. https://doi.org/10.3389/fimmu.2014.00448 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cecchini, R. & Cecchini, A. L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses 143, 110102. https://doi.org/10.1016/j.mehy.2020.110102 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaren, G. W. et al. Leukocyte coping capacity: A novel technique for measuring the stress response in vertebrates. Exp. Physiol. 88(4), 541–6. https://doi.org/10.1113/eph8802571 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Shelton-Rayner, G. K., Macdonald, D. W., Chandler, S., Robertson, D. & Mian, R. Leukocyte reactivity as an objective means of quantifying mental loading during ergonomic evaluation. Cell. Immunol. 263(1), 22–30. https://doi.org/10.1016/j.cellimm.2010.02.011 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fullerton, J. N. et al. Repurposing the Oxford MediStress Leukocyte Coping Capacity™ Assay as a Novel Point-of-Care Biomarker of Neutrophil Function (Presentation British Pharmacological Society, 2019).


    Google Scholar
     

  • Weber, C. & Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 17(11), 1410–22. https://doi.org/10.1038/nm.2538 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Soehnlein, O., Steffens, S., Hidalgo, A. & Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261. https://doi.org/10.1038/nri.2017.10 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miralda, I., Uriarte, S. M. & McLeish, K. R. Multiple phenotypic changes define neutrophil priming. Front. Cell Infect. Microbiol 7, 217. https://doi.org/10.3389/fcimb.2017.00217 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arcanjo, A., Logullo, J. & Menezes, C. C. B. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci. Rep. 10, 19630. https://doi.org/10.1038/s41598-020-76781-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182(6), 1419–1440. https://doi.org/10.1016/j.cell.2020.08.001 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parackova, Z. et al. Disharmonic inflammatory signatures in COVID-19 augmented neutrophils’ but impaired monocytes’ and dendritic cells’ responsiveness. Cell 9(10), 2206. https://doi.org/10.3390/cells9102206 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Aschenbrenner, A. C. et al. (2021) Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med. 13, 7. https://doi.org/10.1186/s13073-020-00823-5 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urrechaga, E. Reviewing the value of leukocytes cell population data (CPD) in the management of sepsis. Ann. Transl. Med. 8(15), 953. https://doi.org/10.21037/atm-19-3173 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related posts

    Diversity Lawsuits Lose Momentum, but Companies Must Practice What Their Inclusion Statements Preach | Novack and Macey LLP

    scceu

    Category Analytics and Intelligence Providers: Defining and Exploring a Nascent Market for Procurement Solutions (Part 1 — Introduction)

    scceu

    Cyrstal View student lands Langford’s highest-ever finish in B.C. Legion contest – Saanich News

    scceu