Supply Chain Council of European Union | Scceu.org
Warehousing

High-dimensional role of AI and machine learning in cancer research

  • 1.

    McNutt TR, Benedict SH, Low DA, Moore K, Shpitser I, Jiang W, et al. Using big data analytics to advance precision radiation oncology. Int J Radiat Oncol Biol Phys. 2018;101:285–91.

    PubMed 

    Google Scholar
     

  • 2.

    Yu B. Three principles of data science: predictability, computability, and stability. KDD ‘17: In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Digital Library; 2017. p. 5.

  • 3.

    Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedested S, et al. From big data to precision medicine. Front Med. 2019;6:34.


    Google Scholar
     

  • 4.

    Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabasi A-L, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9:2691.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Kong J, Lee H, Kim D, Han SK, Ha D, Shin K, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020;11:5485.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Kamdar MR, Fernández JD, Polleres A, Tudorache T, Musen MA. Enabling Web-scale data integration in biomedicine through linked open data. NPJ Digit Med. 2019;2:90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019;40:592–604. Erratum in: Trends Pharmacol Sci. 2019;40:801.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med. 2019;17:114.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Koelzer VH, Sirinukunwattana K, Rittscher J, Mertz KD. Precision immunoprofiling by image analysis and artificial intelligence. Virchows Arch. 2019;474:511–22.

    PubMed 

    Google Scholar
     

  • 10.

    Leiserson MDM, Syrgkanis V, Gilson A, Dudik M, Gillett S, Chayes J, et al. A multifactorial model of T cell expansion and durable clinical benefit in response to a PD-L1 inhibitor. PLoS ONE. 2018;13:e0208422.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD, et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. PLoS Med. 2017;14:e1002309.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Parikh RB, Gdowski A, PAtt DA, Hertler A, Mermel C, Bekelman JE. Using big data and predictive analytics to determine patient risk in oncology. Am Soc Clin Oncol Educ Book. 2019;39:e53–e58.

    PubMed 

    Google Scholar
     

  • 13.

    Sechopoulos I, Mann RM. Stand-alone artificial intelligence—the future of breast cancer screening? Breast. 2020;49:254–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Kann BH, Thompson R, Thomas CR, Dicker A, Aneja S. Artificial intelligence in oncology: current applications and future directions. Oncology. 2019;33:45–63.


    Google Scholar
     

  • 15.

    Patel SK, George B, Rai V. Artificial Intelligence to decode cancer mechanism: beyond patient stratification for precision oncology. Front Phys. 2020;11:1177.

  • 16.

    Rattan R, Kataria T, Banerjee S, Goyal S, Gupta D, Pandita A, et al. Artificial intelligence in oncology, its scope and future prospects with specific reference to radiation oncology. Br J Radiol. 2019;1:1.


    Google Scholar
     

  • 17.

    Weikert T, Cyriac J, Yang S, Nesic I, Parmar V, Stieltjes B. A practical guide to artificial intelligence based analysis in radiology. Invest Radiol. 2020;55:1–7.

    PubMed 

    Google Scholar
     

  • 18.

    Nagy M, Radakovich N, Nazha A. Machine learning in oncology: what should clinicians know? JCO Clin Cancer Inform. 2020;4:799–810.

    PubMed 

    Google Scholar
     

  • 19.

    Tseng H-H, Wei L, Luo Y, Ten Haken RK, El Naqa I. Machine learning and imaging informatics in oncology. Oncology. 2020;98:344–62.

    PubMed 

    Google Scholar
     

  • 20.

    Jaffray DA, Das S, Jacobs PM, Jeraj R, Lambin P. How advances in imaging will affect precision radiation oncology. Int J Radiat Oncol Biol Phys. 2018;101:292–8.

    PubMed 

    Google Scholar
     

  • 21.

    Esteva A, Kuprel B, Novoa R, Ko J, Swetteret SM, Blau HM. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. J Am Med Assoc. 2017;318:2199–210.


    Google Scholar
     

  • 23.

    Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44:5162–71.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Canc. 2019;5:157–69.


    Google Scholar
     

  • 25.

    Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet. 2918;50:1171–9.


    Google Scholar
     

  • 26.

    Lambin P, Leijenaar RTH, Deist TM, Perlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev. 2017;14:749–62.


    Google Scholar
     

  • 27.

    Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, et al. Artificial intelligence and machine learning in radiology: opportunities, challeneges, pitfalls, and criteria for success. J Am Coll Radiol. 2018;15:504–8.

    PubMed 

    Google Scholar
     

  • 29.

    Parekh VS, Jacobs MA. Deep learning and radiomics in precision medicine. Exp Rev Precis Med Drug Dev. 2019;4:59–72.


    Google Scholar
     

  • 30.

    Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47:e185–202.

    PubMed 

    Google Scholar
     

  • 31.

    Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A, et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep. 2019;29:3367–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Liang G, Fan W, Luo H, Zhu X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2020;128:110255.

    PubMed 

    Google Scholar
     

  • 33.

    Lee SC, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22:976–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, et al. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat. 2020;52:100713.

    PubMed 

    Google Scholar
     

  • 38.

    Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2019;37:55–63.

    CAS 

    Google Scholar
     

  • 39.

    Nazha A, Sekeres MA, Bejar R, Rauh MJ, Othus M, Komrokji RS, et al. Genomic biomarkers to predict resistance to hypomethylating agents in patients with myelodysplastic syndromes using artificial intelligence. JCO Prec Oncol. 2019;3:1–11.


    Google Scholar
     

  • 40.

    Nasief H, Zheng C, Schott D, Hall W, Tsai S, Erickson B, et al. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. npj Precis Oncol. 2019;3:25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Lou B, Doken S, Zhuang T, Wingerter D, Gidwani M, Mistry N, et al. An image-based deep learning framework for individualizing radiotherapy dose. Lancet Digit Health. 2019;1:e136–147. Erratum in: Lancet Digit Health. 2019;1:e160.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Hou Z, Ren W, Li S, Liu J, Sun Y, Yan J, et al. Radiomic analysis in contrast-enhanced CT: predict treatment response to chemoradiotherapy in esophageal carcinoma. Oncotarget. 2017;8:104444–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep. 2019;9:1076.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, et al. D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol. 2019;64:065020.

    PubMed 

    Google Scholar
     

  • 45.

    Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020;26:52–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Halabi S, Li C, Luo S. Developing and validating risk assessment models of clinical outcomes in modern oncology. JCO Prec Oncol. 2019;3:PO.19.000068.


    Google Scholar
     

  • 47.

    Blyuss O, Zaikin A, Cherepanova V, Munblit D, Kiseleva EM, Prytomanova OG, et al. Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients. Br J Cancer. 2020;122:692–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Kim D, Joung J-G, Sohn K-A, Shin H, Park YR, Ritchie MD, et al. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J Am Med Inform Assoc. 2015;22:109–20.

    PubMed 

    Google Scholar
     

  • 49.

    Cook DP, Vanderhyden BC. Context specificity of the EMT transcriptional response. Nat Commun. 2020;11:2142.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Lipinski KA, Barber LJ, Davies MN, Ashenden M, Sottoriva A, Gerlinger M. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer. 2016;2:49–63.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Azuaje F. Artificial Intelligence for precision oncology: beyond patient stratification. Npj Prec Oncol. 2019;3:6.


    Google Scholar
     

  • 52.

    Pan SJ, Yang Q. A survey on transfer learning. IEEE Tr Knowl Data Eng. 2010;22:1345–59.


    Google Scholar
     

  • 53.

    Turki T, Wei Z, Wang, TL J. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction. J Bioinform Comput Biol. 2018;16:1840014.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Sevakula RK, Singh V, Verma NK, Kumar C, Cui Y. Transfer learning for molecular cancer classification using deep neural networks. IEEE/ACM Trans Comput Biol Bioinform. 2019;16:2089–2100.

    PubMed 

    Google Scholar
     

  • 55.

    Vu CC, Siddiqui ZA, Zamdborg L, Thompson AB, Quinn TJ, Castillo E, et al. Deep convolutional neural networks for automatic segmentation of thoracic organs-at-risk in radiation oncology – use of non-domain transfer learning. J Appl Clin Med Phys. 2020;21:108–13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Poudel P, Nyamundanda G, Patil Y, Cheang MCU, Sadanandam A. Heterocellular gene signatures reveal luminal-A breast cancer heterogeneity and differential therapeutic responses. npj Breast Cancer. 2019;5:21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer. 2020;1:789–99.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Canc J Clin. 2019;69:127–57.


    Google Scholar
     

  • 59.

    Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer Immunology. The “cancer immunogram”. Science. 2016;352:658–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Lyons YA, Wu SY, Overwijk WW, Baggerly KA, Sood AK. Immune cell profiling in cancer: molecular approaches to cell-specific identification. npj Prec Oncol. 2017;1:26.


    Google Scholar
     

  • 61.

    Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority oversampling technique. J Art Intell Res. 2002;16:321–257.


    Google Scholar
     

  • 62.

    He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE international joint conference on neural networks. (IEEE Xplore ed.), IEEE; 2008. p. 1322–8.

  • 63.

    Griffith GJ, Morris TT, Tudball MJ, Herbert A, Mancano G, Pike L, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat Commun. 2020;11:5749.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Bueno MJ, Mouron S, Quintela-Fandino M. Personalising and targeting antiangiogenic resistance: a complex and multifactorial approach. Br J Cancer. 2017;116:1119–25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computat Str Biotech J. 2020;18:2300–11.

    CAS 

    Google Scholar
     

  • 66.

    Halama N. Machine learning for tissue diagnostics in oncology: brave new world. Br J Cancer. 2019;121:431–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Tuffaha HW, Gordon LG, Scuffham PA. Value of information analysis in oncology: the value of evidence and evidence of value. J Oncol Pract. 2014;10:e55–62.

    PubMed 

    Google Scholar
     

  • 68.

    Kunst NR, Alarid-Escudero F, Paltiel AD, Wang S-Y. A value of information analysis of research on the 21-gene assay for breast cancer management. Value Health. 2019;22:1102–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120:779–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Linn KA, Laber EB, Stefanski LA. iqLearn: interactive Q-Learning in R. J Stat Softw. 2015;64:i01.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Tseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, El Naqa I. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017;44:6690–705.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Petersen BK, Yang J, Grathwohl WS, Cockrell C, Santiago C, An G, et al. Deep reinforcement learning and simulation as a path toward precision medicine. J Comput Biol. 2019;26:597–604.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Ali I, Hart GR, Gunabushanam G, Liang Y, Muhammad W, Nartowt B, et al. Lung nodule detection via deep reinforcement learning. Front Oncol. 2018;8:108.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Liu S, See KC, Ngiam KY, Celi LA, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Intern Res. 2020;2287:e18477.


    Google Scholar
     

  • 75.

    Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol. 2015;12:862–6.

    PubMed 

    Google Scholar
     

  • 76.

    Wu J, Tha KK, Xing L, Li R. Radiomics and radiogenomics for precision radiotherapy. J Radiat Res. 2018;59:i25–i31.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imag. 2020;20:33.


    Google Scholar
     

  • 78.

    Keek SA, Leijenaar RTH, Jochems A, Woodruff HC. A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol. 2018;91:20170926.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Alvarez-Jimenez C, Sandino AA, Prasanna P, Gupta A, Viswanath SE, Romero E. Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: preliminary results. Cancers. 2020;12:3663.

    PubMed Central 

    Google Scholar
     

  • 80.

    Saltz JH, Gupta R. Artificial intelligence and the interplay between tumor and immunity, Ch. 10. In: Artificial Intelligence and Deep Learning in Pathology. (Stanley C ed.), Elsevier; 2021. p. 211–35.

  • 81.

    Nie K, Al-Hallaq H, Li A, Benedict SH, Sohn JW, Moran JM, et al. NCTN assessment of current applications of radiomics in oncology. Int J Rad Oncol. 2019;104:302–15.


    Google Scholar
     

  • 82.

    Lv W, Ashrafinia S, Ma J, Lu L, Rahmim A. Multi-level multi-modality fusion radiomics: application to PET and CT imaging for prognostication of head and neck. Cancer IEEE J Biomed Health Inform. 2020;24:2268–77.

    PubMed 

    Google Scholar
     

  • 83.

    Wei L, Osman S, Hatt M, El Naqa I. Machine learning for radiomics-based multimodality and multiparametric modeling. Q J Nucl Med Mol Imag. 2019;63:323–38.


    Google Scholar
     

  • 84.

    Papp L, Spielvogel CP, Rausch I, Hacker M, Beyer T. Personalized medicine through hybrid imaging and medical big data analysis. Front Phys. 2018;6:51.


    Google Scholar
     

  • 85.

    Hagiwara A, Fujita S, Ohno M, Aoki S. Variability and standardization of quantitative imaging. Integr Radiol. 2020;55:601–16.


    Google Scholar
     

  • 86.

    Mühlberg A, Katzmann A, Heinemann V, Kärgel R, Wels M, Taubmann O, et al. The Technome—a predictive internal calibration approach for quantitative imaging biomarker research. Sci Rep. 2020;10:1103.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Sala E, Merna E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72:3–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are. Data Radiol. 2016;278:563–77.


    Google Scholar
     

  • 89.

    Gillies RJ, Balagurunathan Y. Perfusion MR imaging of breast cancer: insights using ‘habitat imaging’. Radiology. 2018;288:36–37.

    PubMed 

    Google Scholar
     

  • 90.

    Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imag. 2019;46:2656–72.


    Google Scholar
     

  • 91.

    Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7:588.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, et al. Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol. 2019;14:43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Lin P, Yang PF, Chen S, Shao Y-Y, Xu L, Wu Y, et al. A delta-radiomics model for preoperative evaluation of neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imag. 2020;20:7.


    Google Scholar
     

  • 94.

    Gatouillat A, Badr Y, Massot B, Sejdić E. Internet of medical things: a review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J. 2018;5:3810–22.


    Google Scholar
     

  • 95.

    Han T, Nunes VX, Souza LFDF, Marques AG, Silva ICL, Marcos Aurelio AF, et al. Internet of medical things—based on deep learning techniques for segmentation of lung and stroke regions in CT scans. IEEE Access. 2020;8:71117–35.


    Google Scholar
     

  • 96.

    Souza LFF, Silva ICL, Marques AG, Silva FHDS, Nunes VX, Hassan MM, et al. Internet of medical things: an effective and fully automatic iot approach using deep learning and fine-tuning to lung CT segmentation. Sensors. 2020;20:E6711.

    PubMed 

    Google Scholar
     

  • 97.

    Sun C, Tian X, Liu Z, Li W, Li P, Chen J, et al. Radiomic analysis for pretreatment prediction of response to neoadjuvant chemotherapy in locally advanced cervical cancer: a multicentre study. eBioMedicine. 2019;46:160–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentric study. J Nucl Med. 2020;61:814–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y, et al. Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol. 2018;28:3640–50.

    PubMed 

    Google Scholar
     

  • 100.

    Welch ML, McIntosh C, Haibe-Kains B, Milosevic MF, Wee L, Dekker A, et al. Vulnerabilities of radiomic signature development: the need for safeguards. Radioth Oncol. 2019;130:2–9.


    Google Scholar
     

  • 101.

    Capobianco E, Valdes C, Sarti S, Jiang Z, Poliseno L, Tsinoremas NF. Ensemble modeling approach targeting heterogeneous RNA-Seq data: application to melanoma pseudogenes. Sci Rep. 2017;7:17344.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Ho D. Artificial intelligence in cancer therapy. Science. 2020;367:982–3.

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. npj Digit Med. 2019;2:69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Toh TS, Dondelinger F, Wang D. Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine 2019;47:607–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Liu R, Rizzo S, Whipple S, Pal N, Pineda AL, Lu M, et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 2021.

  • 106.

    Capobianco E. Imprecise data and their impact on translational research in medicine. Front Med. 2020;7:82.


    Google Scholar
     

  • 107.

    Bezemer T, de Groot MC, Blasse E, Ten Berg MJ, Kappen TH, Bredenoord AL, et al. Factor in clinical decision support systems. J Med Intern Res. 2019;21:e11732.


    Google Scholar
     

  • 108.

    Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12:eaax7533. Erratum in: Sci Transl Med. 2020;12:eabc1078.

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2019;143:859–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 110.

    Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Path. 2018;42:1636–46.

    PubMed 

    Google Scholar
     

  • 111.

    Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393:1577–9.

    PubMed 

    Google Scholar
     

  • 113.

    Faes L, Liu X, Wagner SK, Fu DJ, Balaskas KA. Clinician’s guide to artificial intelligence: how to critically appraise machine learning studies. Transl Vis Sci Technol. 2020;9:33. Erratum in: Transl Vis Sci Technol. 2020;9:7.

  • 114.

    CONSORT-AI and SPIRIT-AI Steering Group. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. Nat Med. 2019;25:1467–8.


    Google Scholar
     

  • 115.

    Liu X, Faes L, Calvert MJ, Denniston AK. CONSORT/SPIRIT-AI Extension Group. Extension of the CONSORT and SPIRIT statements. Lancet. 2019;394:1225.

    PubMed 

    Google Scholar
     

  • 116.

    Dong Y, Yang W, Wang J, Zhao J, Qiang Y. MLW-gcForest: a multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data. BMC Bioinform. 2019;20:578.


    Google Scholar
     

  • 117.

    Nestor B, McDermott MBA, Chauhan G, Naumann T, Hughes MC, Goldenberg A, et al. Rethinking clinical prediction: why machine learning must consider year of care and feature aggregation. In: Machine Learning for Health (ML4H): Workshop at NeurIPS. 2018. arXiv:1811.07216 [cs.LG].

  • 118.

    Davis SE, Greevy RA, Fonnesbeck C, Lasko TA, Walsh CG, Matheny ME. A nonparametric updating method to correct clinical prediction model drift. J Am Med Inform Assoc. 2019;26:1448–57.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related posts

    Amazon to sublease some of its warehouses as online shopping slows

    scceu

    Refrigerated Warehousing Market Growth Factors and Professional In-Depth Analysis 2020-2027 – Aerospace Journal

    scceu

    SAP SE, Cognizant, Accenture, Veson Nautical – Designer Women

    scceu