Supply Chain Council of European Union | Scceu.org
Procurement

Gut permeability may be associated with periprosthetic joint infection after total hip and knee arthroplasty

  • Kapadia, B. H. et al. Periprosthetic joint infection. Lancet 387, 386–394 (2016).

    PubMed 

    Google Scholar
     

  • Nishitani, K. et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 33, 1311–1319 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Mesy Bentley, K. L. et al. Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J. Bone Miner. Res. 32, 985–990 (2017).

    PubMed 

    Google Scholar
     

  • The Group of Investigators for Streptococcal Prosthetic Joint Infection et al. The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study. Clin. Infect. Dis. 64, 1742–1752 (2017).

  • Bloch, B. V., Shah, A., Snape, S. E., Boswell, T. C. J. & James, P. J. Primary hip and knee arthroplasty in a temporary operating theatre is associated with a significant increase in deep periprosthetic infection. Bone Jt. J. 99B, 917–920 (2017).


    Google Scholar
     

  • Block, J. E. & Stubbs, H. A. Reducing the risk of deep wound infection in primary joint arthroplasty with antibiotic bone cement. Orthopedics 28, 1334–1345 (2005).

    PubMed 

    Google Scholar
     

  • Springer, B. D. The diagnosis of periprosthetic joint infection. J. Arthroplas. 30, 908–911 (2015).


    Google Scholar
     

  • McConoughey, S. J. et al. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 9, 987–1007 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H., Jin, H., Zhang, C. & Yuan, T. Intestinal methicillin-resistant Staphylococcus aureus causes prosthetic infection via ‘Trojan Horse’ mechanism: Evidence from a rat model. Bone Jt. Res. 9, 152–161 (2020).


    Google Scholar
     

  • Krezalek, M. A. et al. Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the ‘trojan Horse Hypothesis’. Ann. Surg. 267, 749–758 (2018).

    PubMed 

    Google Scholar
     

  • Alverdy, J. C., Hyman, N. & Gilbert, J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. The Lancet Infectious Diseases vol. 20 e38–e43 (Lancet Publishing Group, 2020).

  • Masters, E. A. et al. Evolving concepts in bone infection: redefining “biofilm”, “acute versus chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 7, 1–18 (2019).

    CAS 

    Google Scholar
     

  • Thwaites, G. E. & Gant, V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?. Nat. Rev. Microbiol. 9, 215–222 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Muraille, E., Leo, O. & Moser, M. Th1/Th2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishitani, K. et al. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 5(19), e141164 (2020).

    PubMed Central 

    Google Scholar
     

  • Löwik, C. A. M. M. et al. Obese patients have higher rates of polymicrobial and Gram-negative early periprosthetic joint infections of the hip than non-obese patients. PLoS ONE 14, e0215035 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Fasano, A. & Shea-Donohue, T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 416–422 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Arrieta, M. C., Bistritz, L. & Meddings, J. B. Alterations in intestinal permeability. Gut 55, 1512–1520 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355, 1518–1519 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W., Uzzau, S., Goldblum, S. E. & Fasano, A. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113, 4435–4440 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Fasano, A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 9, 69 (2020).

    CAS 

    Google Scholar
     

  • Shohat, N. et al. Hip and knee section, what is the definition of a periprosthetic joint infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: Proceedings of international consensus on orthopedic infections. J. Arthroplasty 34, S325–S327 (2019).

    PubMed 

    Google Scholar
     

  • Peterson, D. A. & Jimenez Cardona, R. A. Specificity of the adaptive immune response to the gut microbiota. In Advances in immunology vol. 107 71–107 (2010).

  • Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-020711-074937 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 2020(18), 521–538 (2020).


    Google Scholar
     

  • Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 2020(588), 303–307 (2020).

    ADS 

    Google Scholar
     

  • Joeri, T. et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193 (2020).


    Google Scholar
     

  • Craig, S. & Alessio, F. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4, e1251384 (2016).


    Google Scholar
     

  • Malíčková, M. et al. Fecal zonulin is elevated in Crohn’s disease and in cigarette smokers. Pract. Lab. Med. 9, 39–44 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aleksandrova, K., Romero-Mosquera, B. & Hernandez, V. Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel Diseases and Prospects for Management and Prevention. Nutrients 9(9), 962 (2017).

    PubMed Central 

    Google Scholar
     

  • Hernandez, C. J. et al. Disruption of the gut microbiome increases the risk of periprosthetic joint infection in mice. Clin. Orthop. Relat. Res. https://doi.org/10.1097/CORR.0000000000000851 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 1–15 (2017).


    Google Scholar
     

  • Davey, M. E. & O’toole, G. A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guégan, J.-F. The nature of ecology of infectious disease. Lancet Infect. Dis. 19, 1296 (2019).


    Google Scholar
     

  • Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007(449), 819–826 (2007).

    ADS 

    Google Scholar
     

  • Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020(30), 492–506 (2020).


    Google Scholar
     

  • Johnson, P. T. J., Roode, J. C. de & Fenton, A. Why infectious disease research needs community ecology. Science. 349(6252), 1259504 (2015).


    Google Scholar
     

  • Shive, C. L., Jiang, W., Anthony, D. D. & Lederman, M. M. Soluble CD14 is a nonspecific marker of monocyteactivation. AIDS 29, 1263 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Rl, K. & Pa, T. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin Res. 11, 225–229 (2005).


    Google Scholar
     

  • Sánchez-Alcoholado, L. et al. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int. J. Mol. Sci. 21, 1–20 (2020).


    Google Scholar
     

  • Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91, 151–175 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet (London, England) 355, 1518–1519 (2000).

    CAS 

    Google Scholar
     

  • Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zak-Gołąb, A. et al. Gut microbiota, microinflammation, metabolic profile, and zonulin concentration in obese and normal weight subjects. Int. J. Endocrinol. 2013, 674106 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Fasano, A. Intestinal permeability and its regulation by Zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 10, 1096–1100 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Zonulin regulates intestinal permeability and facilitates enteric bacteria permeation in coronary artery disease. Sci. Rep. 6, 29142 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related posts

    South Africa lines up 2.6GW renewable energy procurement round

    scceu

    Sharks Plan to Terminate Evander Kane’s Contract | Sports News

    scceu

    Impact of COVID-19 Outbreak on Procurement Software Market Segments, Opportunity, Growth and Forecast by End-use Industry 2020-2026 – Cole Reports

    scceu