Wandeler, P., Hoeck, P. E. & Keller, L. F. Back to the future: Museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).
Bi, K. et al. Unlocking the vault: Next-generation museum population genomics. Mol. Ecol. 22, 6018–6032 (2013).
Metcalf, J. L. et al. Historical stocking data and 19th century DNA reveal human-induced changes to native diversity and distribution of cutthroat trout. Mol. Ecol. 21, 5194–5207 (2012).
Mikheyev, A. S. et al. Museum genomics confirms that the Lord Howe Island stick insect survived extinction. Curr. Biol. 27, 3157–3161 (2017).
Poulakakis, N. et al. Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise. Proc. Natl. Acad. Sci. 105, 15464–15469 (2008).
Farley, E. V. et al. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka). Fish. Bull. 105, 121–130 (2007).
Pannella, G. Fish otoliths: daily growth layers and periodical patterns. Science 173, 1124–1127 (1971).
Matta, M. E., Black, B. A. & Wilderbuer, T. K. Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. Mar. Ecol. Prog. Ser. 413, 137–145 (2010).
Morrongiello, J. R., Sweetman, P. C. & Thresher, R. E. Fishing constrains phenotypic responses of marine fish to climate variability. J. Anim. Ecol. 88, 1645–1656 (2019).
Peyronnet, A., Friedland, K., Maoileidigh, N., Manning, M. & Poole, W. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar, L. J. Fish Biol. 71, 684–700 (2007).
Smoliński, S. & Mirny, Z. Otolith biochronology as an indicator of marine fish responses to hydroclimatic conditions and ecosystem regime shifts. Ecol. Indic. 79, 286–294 (2017).
Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).
Elliott, L. D., Ward, H. G. & Russello, M. A. Kokanee–sockeye salmon hybridization leads to intermediate morphology and resident life history: Implications for fisheries management. Can. J. Fish. Aquat. Sci. 77, 355–364 (2020).
Adey, E., Black, K., Sawyer, T., Shimmield, T. & Trueman, C. Scale microchemistry as a tool to investigate the origin of wild and farmed Salmo salar. Mar. Ecol. Prog. Ser. 390, 225–235 (2009).
Flem, B., Moen, V., Finne, T. E., Viljugrein, H. & Kristoffersen, A. B. Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries. Fish. Res. 190, 183–196 (2017).
Limburg, K. E. et al. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia. J. Mar. Syst. 141, 167–178 (2015).
López-Duarte, P. C. et al. Is exposure to Macondo oil reflected in the Otolith chemistry of marsh-resident fish?. PLoS ONE 11, e0162699 (2016).
Grønkjær, P. et al. Stable N and C isotopes in the organic matrix of fish otoliths: Validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Can. J. Fish. Aquat. Sci. 70, 143–146 (2013).
MacKenzie, K. M. et al. Stable isotopes reveal age-dependent trophic level and spatial segregation during adult marine feeding in populations of salmon. ICES J. Mar. Sci. 69, 1637–1645 (2012).
Nonogaki, H., Nelson, J. A. & Patterson, W. P. Dietary histories of herbivorous loricariid catfishes: Evidence from δ 13 C values of otoliths. Environ. Biol. Fishes 78, 13–21 (2007).
Sirot, C. et al. Using otolith organic matter to detect diet shifts in Bardiella chrysoura, during a period of environmental changes. Mar. Ecol. Prog. Ser. 575, 137–152 (2017).
Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Stable isotopes reveal linkages between ocean climate, plankton community dynamics, and survival of two populations of Atlantic salmon (Salmo salar). ICES J. Mar. Sci. 69, 784–794 (2012).
Ciborowski, K. et al. Stocking may increase mitochondrial DNA diversity but fails to halt the decline of endangered Atlantic salmon populations. Conserv. Genet. 8, 1355–1367 (2007).
McDermid, J., Nienhuis, S., Al-Shamlih, M., Haxton, T. & Wilson, C. Evaluating the genetic consequences of river fragmentation in lake sturgeon (Acipenser fulvescens Rafinesque, 1817) populations. J. Appl. Ichthyol. 30, 1514–1523 (2014).
Therkildsen, N. O. et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol. Appl. 6, 690–705 (2013).
Bonanomi, S. et al. Archived DNA reveals fisheries and climate induced collapse of a major fishery. Sci. Rep. 5, 1–8 (2015).
Östergren, J. et al. A century of genetic homogenization in Baltic salmon: Evidence from archival DNA. Proc. R. Soc. B 288, 20203147 (2021).
Hofreiter, M. & Shapiro, B. Ancient DNA: Methods and Protocols (Humana Press Incorporated, 2012).
Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).
Carpenter, M. L. et al. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864 (2013).
Smith, M. J. et al. Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol. Ecol. Resour. 11, 268–277 (2011).
Pinsky, M. L. et al. Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proc. Natl. Acad. Sci. 118, (2021).
Campbell, N. R., Harmon, S. A. & Narum, S. R. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Resour. 15, 855–867 (2015).
Meek, M. H. & Larson, W. A. The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Mol. Ecol. Resour. 19, 795–803 (2019).
Andrews, K. R., De Barba, M., Russello, M. A. & Waits, L. P. Advances in using non-invasive, archival, and environmental samples for population genomic studies. (2018).
Schmidt, D. A., Campbell, N. R., Govindarajulu, P., Larsen, K. W. & Russello, M. A. Genotyping-in-Thousands by sequencing (GT-seq) panel development and application to minimally invasive DNA samples to support studies in molecular ecology. Mol. Ecol. Resour. 20, 114–124 (2020).
Buzzell, T. (Knowledge K., Director of Heritage, Lands and Resources), Champagne and Aishihik First Nations. Kokanee spawning. (2020).
Setzke, C., Wong, C. & Russello, M. A. Genome-wide assessment of kokanee salmon stock diversity, population history and hatchery representation at the northern range margin. Conserv. Genet. (in press) https://doi.org/10.1007/s10592-021-01418-2.
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Luikart, G., Allendorf, F., Cornuet, J. & Sherwin, W. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).
Wickstrom, R. Limnological survey of Kluane National Park. Can. Wildl. Serv. Rep. Parks Can. Winn. 5, 352 (1978).
Wickstrom, R. Creel census, spawning enumeration and other studies of kokanee of the Kathleen drainage, Kluane National Park, Yukon Territory. 146 (1982).
Jensen, E. L. et al. Temporal mitogenomics of the Galapagos giant tortoise from Pinzón reveals potential biases in population genetic inference. J. Hered. 109, 631–640 (2018).
Chang, S. L., Ward, H. G. & Russello, M. A. Genotyping-in-Thousands by sequencing panel development and application to inform kokanee salmon (Oncorhynchus nerka) fisheries management at multiple scales. PLoS ONE In press.
Chang, S. L., Ward, H. G. & Russello, M. A. Genotyping-in-Thousands by sequencing panel to monitor kokanee-sockeye salmon (Oncorhynchus nerka) introgressive hybridization associated with a long-term reintroduction program. Mol. Ecol. Resour. Submitted.
Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
Meirmans, P. G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).
Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).
England, P. R., Cornuet, J.-M., Berthier, P., Tallmon, D. A. & Luikart, G. Estimating effective population size from linkage disequilibrium: Severe bias in small samples. Conserv. Genet. 7, 303 (2006).
Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).
Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
England, P. R. et al. Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv. Genet. 4, 595–604 (2003).
Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 108, 745–763 (1984).
Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111, 675–689 (1985).
Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).
Brown, J. W. et al. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian peregrine falcons, Falco peregrinus. Mol. Ecol. 16, 327–343 (2007).
Hailer, F. et al. Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol. Lett. 2, 316–319 (2006).
Allendorf, F. W. & Lesica, P. When are peripheral populations valuable for conservation?. Conserv. Biol. 9, 753–760 (1995).
Eckert, C., Samis, K. & Lougheed, S. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).
Markert, J. A. et al. Population genetic diversity and fitness in multiple environments. BMC Evol. Biol. 10, 205 (2010).
Menzies, B. R. et al. Limited genetic diversity preceded extinction of the Tasmanian tiger. PLoS ONE 7, e35433–e35433 (2012).
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U. S. A. 101, 15261 (2004).
Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).
Rivers, P. & Ardren, W. R. The value of archives. Fisheries 23, 6–9 (1998).
Vollmar, A., Macklin, J. A. & Ford, L. Natural history specimen digitization: challenges and concerns. Biodivers. Inform. 7, (2010).
Valenzuela-Quiñonez, F. How fisheries management can benefit from genomics?. Brief. Funct. Genomics 15, 352–357 (2016).
Price, M. H. H. et al. Genetics of century‐old fish scales reveal population patterns of decline. Conserv. Lett. 12, (2019).
Leadbetter, A. et al. A modular approach to cataloguing marine science data. Earth Sci. Inform. 13, 537–553 (2020).
Tray, E. et al. An open-source database model and collections management system for fish scale and otolith archives. Ecol. Inform. 59, 101115 (2020).
Nyström, V., Angerbjörn, A. & Dalén, L. Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114, 84–94 (2006).
Sefc, K. M., Payne, R. B. & Sorenson, M. D. Single base errors in PCR products from avian museum specimens and their effect on estimates of historical genetic diversity. Conserv. Genet. 8, 879–884 (2007).
Vieira, M. L. C., Santini, L., Diniz, A. L. & de Munhoz, C. F. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).
Scott, W. & Crossman, E. Freshwater fishes of Canada. Bulletin 184 (1973).
Wong, C. Status of Ecological Integrity in Kluane National Park and Reserve 2017: Technical Compendium to the State of the Park Report (p. 66). Whitehorse, Yukon: Parks Canada. (2017).