Supply Chain Council of European Union | Scceu.org
Procurement

Genotyping-in-Thousands by sequencing of archival fish scales reveals maintenance of genetic variation following a severe demographic contraction in kokanee salmon

  • 1.

    Wandeler, P., Hoeck, P. E. & Keller, L. F. Back to the future: Museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).

    PubMed 

    Google Scholar
     

  • 2.

    Bi, K. et al. Unlocking the vault: Next-generation museum population genomics. Mol. Ecol. 22, 6018–6032 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Metcalf, J. L. et al. Historical stocking data and 19th century DNA reveal human-induced changes to native diversity and distribution of cutthroat trout. Mol. Ecol. 21, 5194–5207 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Mikheyev, A. S. et al. Museum genomics confirms that the Lord Howe Island stick insect survived extinction. Curr. Biol. 27, 3157–3161 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Poulakakis, N. et al. Historical DNA analysis reveals living descendants of an extinct species of Galápagos tortoise. Proc. Natl. Acad. Sci. 105, 15464–15469 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Farley, E. V. et al. Early marine growth in relation to marine-stage survival rates for Alaska sockeye salmon (Oncorhynchus nerka). Fish. Bull. 105, 121–130 (2007).


    Google Scholar
     

  • 7.

    Pannella, G. Fish otoliths: daily growth layers and periodical patterns. Science 173, 1124–1127 (1971).

    ADS 

    Google Scholar
     

  • 8.

    Matta, M. E., Black, B. A. & Wilderbuer, T. K. Climate-driven synchrony in otolith growth-increment chronologies for three Bering Sea flatfish species. Mar. Ecol. Prog. Ser. 413, 137–145 (2010).

    ADS 

    Google Scholar
     

  • 9.

    Morrongiello, J. R., Sweetman, P. C. & Thresher, R. E. Fishing constrains phenotypic responses of marine fish to climate variability. J. Anim. Ecol. 88, 1645–1656 (2019).

    PubMed 

    Google Scholar
     

  • 10.

    Peyronnet, A., Friedland, K., Maoileidigh, N., Manning, M. & Poole, W. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar, L. J. Fish Biol. 71, 684–700 (2007).


    Google Scholar
     

  • 11.

    Smoliński, S. & Mirny, Z. Otolith biochronology as an indicator of marine fish responses to hydroclimatic conditions and ecosystem regime shifts. Ecol. Indic. 79, 286–294 (2017).


    Google Scholar
     

  • 12.

    Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Elliott, L. D., Ward, H. G. & Russello, M. A. Kokanee–sockeye salmon hybridization leads to intermediate morphology and resident life history: Implications for fisheries management. Can. J. Fish. Aquat. Sci. 77, 355–364 (2020).


    Google Scholar
     

  • 14.

    Adey, E., Black, K., Sawyer, T., Shimmield, T. & Trueman, C. Scale microchemistry as a tool to investigate the origin of wild and farmed Salmo salar. Mar. Ecol. Prog. Ser. 390, 225–235 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Flem, B., Moen, V., Finne, T. E., Viljugrein, H. & Kristoffersen, A. B. Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries. Fish. Res. 190, 183–196 (2017).


    Google Scholar
     

  • 16.

    Limburg, K. E. et al. In search of the dead zone: Use of otoliths for tracking fish exposure to hypoxia. J. Mar. Syst. 141, 167–178 (2015).


    Google Scholar
     

  • 17.

    López-Duarte, P. C. et al. Is exposure to Macondo oil reflected in the Otolith chemistry of marsh-resident fish?. PLoS ONE 11, e0162699 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Grønkjær, P. et al. Stable N and C isotopes in the organic matrix of fish otoliths: Validation of a new approach for studying spatial and temporal changes in the trophic structure of aquatic ecosystems. Can. J. Fish. Aquat. Sci. 70, 143–146 (2013).


    Google Scholar
     

  • 19.

    MacKenzie, K. M. et al. Stable isotopes reveal age-dependent trophic level and spatial segregation during adult marine feeding in populations of salmon. ICES J. Mar. Sci. 69, 1637–1645 (2012).


    Google Scholar
     

  • 20.

    Nonogaki, H., Nelson, J. A. & Patterson, W. P. Dietary histories of herbivorous loricariid catfishes: Evidence from δ 13 C values of otoliths. Environ. Biol. Fishes 78, 13–21 (2007).


    Google Scholar
     

  • 21.

    Sirot, C. et al. Using otolith organic matter to detect diet shifts in Bardiella chrysoura, during a period of environmental changes. Mar. Ecol. Prog. Ser. 575, 137–152 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Stable isotopes reveal linkages between ocean climate, plankton community dynamics, and survival of two populations of Atlantic salmon (Salmo salar). ICES J. Mar. Sci. 69, 784–794 (2012).


    Google Scholar
     

  • 23.

    Ciborowski, K. et al. Stocking may increase mitochondrial DNA diversity but fails to halt the decline of endangered Atlantic salmon populations. Conserv. Genet. 8, 1355–1367 (2007).

    CAS 

    Google Scholar
     

  • 24.

    McDermid, J., Nienhuis, S., Al-Shamlih, M., Haxton, T. & Wilson, C. Evaluating the genetic consequences of river fragmentation in lake sturgeon (Acipenser fulvescens Rafinesque, 1817) populations. J. Appl. Ichthyol. 30, 1514–1523 (2014).


    Google Scholar
     

  • 25.

    Therkildsen, N. O. et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol. Appl. 6, 690–705 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Bonanomi, S. et al. Archived DNA reveals fisheries and climate induced collapse of a major fishery. Sci. Rep. 5, 1–8 (2015).


    Google Scholar
     

  • 27.

    Östergren, J. et al. A century of genetic homogenization in Baltic salmon: Evidence from archival DNA. Proc. R. Soc. B 288, 20203147 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Hofreiter, M. & Shapiro, B. Ancient DNA: Methods and Protocols (Humana Press Incorporated, 2012).


    Google Scholar
     

  • 29.

    Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004).

    PubMed 

    Google Scholar
     

  • 30.

    Carpenter, M. L. et al. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Smith, M. J. et al. Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol. Ecol. Resour. 11, 268–277 (2011).

    PubMed 

    Google Scholar
     

  • 32.

    Pinsky, M. L. et al. Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proc. Natl. Acad. Sci. 118, (2021).

  • 33.

    Campbell, N. R., Harmon, S. A. & Narum, S. R. Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Resour. 15, 855–867 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Meek, M. H. & Larson, W. A. The future is now: Amplicon sequencing and sequence capture usher in the conservation genomics era. Mol. Ecol. Resour. 19, 795–803 (2019).

    PubMed 

    Google Scholar
     

  • 35.

    Andrews, K. R., De Barba, M., Russello, M. A. & Waits, L. P. Advances in using non-invasive, archival, and environmental samples for population genomic studies. (2018).

  • 36.

    Schmidt, D. A., Campbell, N. R., Govindarajulu, P., Larsen, K. W. & Russello, M. A. Genotyping-in-Thousands by sequencing (GT-seq) panel development and application to minimally invasive DNA samples to support studies in molecular ecology. Mol. Ecol. Resour. 20, 114–124 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Buzzell, T. (Knowledge K., Director of Heritage, Lands and Resources), Champagne and Aishihik First Nations. Kokanee spawning. (2020).

  • 38.

    Setzke, C., Wong, C. & Russello, M. A. Genome-wide assessment of kokanee salmon stock diversity, population history and hatchery representation at the northern range margin. Conserv. Genet. (in press) https://doi.org/10.1007/s10592-021-01418-2.

  • 39.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).


    Google Scholar
     

  • 40.

    Luikart, G., Allendorf, F., Cornuet, J. & Sherwin, W. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Wickstrom, R. Limnological survey of Kluane National Park. Can. Wildl. Serv. Rep. Parks Can. Winn. 5, 352 (1978).

  • 42.

    Wickstrom, R. Creel census, spawning enumeration and other studies of kokanee of the Kathleen drainage, Kluane National Park, Yukon Territory. 146 (1982).

  • 43.

    Jensen, E. L. et al. Temporal mitogenomics of the Galapagos giant tortoise from Pinzón reveals potential biases in population genetic inference. J. Hered. 109, 631–640 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Chang, S. L., Ward, H. G. & Russello, M. A. Genotyping-in-Thousands by sequencing panel development and application to inform kokanee salmon (Oncorhynchus nerka) fisheries management at multiple scales. PLoS ONE In press.

  • 45.

    Chang, S. L., Ward, H. G. & Russello, M. A. Genotyping-in-Thousands by sequencing panel to monitor kokanee-sockeye salmon (Oncorhynchus nerka) introgressive hybridization associated with a long-term reintroduction program. Mol. Ecol. Resour. Submitted.

  • 46.

    Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Meirmans, P. G. genodive version 3.0: Easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20, 1126–1131 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    England, P. R., Cornuet, J.-M., Berthier, P., Tallmon, D. A. & Luikart, G. Estimating effective population size from linkage disequilibrium: Severe bias in small samples. Conserv. Genet. 7, 303 (2006).


    Google Scholar
     

  • 52.

    Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17, 67–77 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).


    Google Scholar
     

  • 54.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    England, P. R. et al. Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv. Genet. 4, 595–604 (2003).

    CAS 

    Google Scholar
     

  • 57.

    Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 108, 745–763 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111, 675–689 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).

    PubMed 

    Google Scholar
     

  • 60.

    Brown, J. W. et al. Appraisal of the consequences of the DDT-induced bottleneck on the level and geographic distribution of neutral genetic variation in Canadian peregrine falcons, Falco peregrinus. Mol. Ecol. 16, 327–343 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Hailer, F. et al. Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol. Lett. 2, 316–319 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Allendorf, F. W. & Lesica, P. When are peripheral populations valuable for conservation?. Conserv. Biol. 9, 753–760 (1995).


    Google Scholar
     

  • 63.

    Eckert, C., Samis, K. & Lougheed, S. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Markert, J. A. et al. Population genetic diversity and fitness in multiple environments. BMC Evol. Biol. 10, 205 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Menzies, B. R. et al. Limited genetic diversity preceded extinction of the Tasmanian tiger. PLoS ONE 7, e35433–e35433 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U. S. A. 101, 15261 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Rivers, P. & Ardren, W. R. The value of archives. Fisheries 23, 6–9 (1998).


    Google Scholar
     

  • 69.

    Vollmar, A., Macklin, J. A. & Ford, L. Natural history specimen digitization: challenges and concerns. Biodivers. Inform. 7, (2010).

  • 70.

    Valenzuela-Quiñonez, F. How fisheries management can benefit from genomics?. Brief. Funct. Genomics 15, 352–357 (2016).

    PubMed 

    Google Scholar
     

  • 71.

    Price, M. H. H. et al. Genetics of century‐old fish scales reveal population patterns of decline. Conserv. Lett. 12, (2019).

  • 72.

    Leadbetter, A. et al. A modular approach to cataloguing marine science data. Earth Sci. Inform. 13, 537–553 (2020).


    Google Scholar
     

  • 73.

    Tray, E. et al. An open-source database model and collections management system for fish scale and otolith archives. Ecol. Inform. 59, 101115 (2020).


    Google Scholar
     

  • 74.

    Nyström, V., Angerbjörn, A. & Dalén, L. Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114, 84–94 (2006).


    Google Scholar
     

  • 75.

    Sefc, K. M., Payne, R. B. & Sorenson, M. D. Single base errors in PCR products from avian museum specimens and their effect on estimates of historical genetic diversity. Conserv. Genet. 8, 879–884 (2007).

    CAS 

    Google Scholar
     

  • 76.

    Vieira, M. L. C., Santini, L., Diniz, A. L. & de Munhoz, C. F. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Scott, W. & Crossman, E. Freshwater fishes of Canada. Bulletin 184 (1973).

  • 78.

    Wong, C. Status of Ecological Integrity in Kluane National Park and Reserve 2017: Technical Compendium to the State of the Park Report (p. 66). Whitehorse, Yukon: Parks Canada. (2017).

  • Related posts

    Bots, Nam to co-operate on vaccine procurement || The Southern Times

    scceu

    Maryland Statewide Candidates Speak at County Conference

    scceu

    Procurement Software Market to Register Incremental Dollar Growth Opportunity | Tradogram, Aestiva, eRequester, Bellwether

    scceu