Supply Chain Council of European Union | Scceu.org
Procurement

Generic surgical process model for minimally invasive liver treatment methods

  • Kenngott, H. G. et al. Effects of laparoscopy, laparotomy, and respiratory phase on liver volume in a live porcine model for liver resection. Surg. Endosc. 35(12), 7049–7057 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maier-Hein, L. et al. Surgical data science–from concepts toward clinical translation. Med. Image Anal. 76, 102306 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • MacKenzie, C. L. et al. Hierarchical decomposition of laparoscopic surgery: A human factors approach to investigating the operating room environment. Minim. Invasive Ther. Allied Technol. 10(3), 121–127 (2001).

    Article 

    Google Scholar
     

  • Loeve, A. J. et al. Workflow and intervention times of MR-guided focused ultrasound—Predicting the impact of new techniques. J. Biomed. Inform. 60, 38–48 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Franke, S., Meixensberger, J. & Neumuth, T. Intervention time prediction from surgical low-level tasks. J. Biomed. Inform. 46(1), 152–159 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Burgert, O. et al. Requirement specification for surgical simulation systems with surgical workflows. In 15th Annual Conference on Medicine Meets Virtual Reality, MMVR 2007 58–63 (IOS Press, 2007).


    Google Scholar
     

  • Ebrahimi, H., Yee, A. & Whyne, C. Surgical process analysis identifies lack of connectivity between sequential fluoroscopic 2D alignment as a critical impediment in femoral intramedullary nailing. Int. J. Comput. Assist. Radiol. Surg. 11(2), 297–305 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Neumann, J., et al., Perioperative workflow simulation and optimization in orthopedic surgery, in 1st International Workshop on OR 2.0 Context-Aware Operating Theaters, OR 2.0 2018, 5th International Workshop on Computer Assisted Robotic Endoscopy, CARE 2018, 7th International Workshop on Clinical Image-Based Procedures, CLIP 2018, and 1st International Workshop on Skin Image Analysis, ISIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018. 2018. p. 3–11.

  • Fernández-Gutiérrez, F. et al. Workflow optimisation for multimodal imaging procedures: A case of combined X-ray and MRI-guided TACE. Minim. Invasive Ther. Allied Technol. 26(1), 31–38 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Gholinejad, M., Loeve, A. J. & Dankelman, J. Surgical process modelling strategies: Which method to choose for determining workflow?. Minim. Invasive Ther. Allied Technol. 28(2), 91–104 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Neumuth, T. Surgical process modeling. Innov. Surg. Sci. 2(3), 123–137 (2020).


    Google Scholar
     

  • Lalys, F. & Jannin, P. Surgical process modelling: A review. Int. J. Comput. Assist. Radiol. Surg. 9(3), 495–511 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Forestier, G. et al. Finding discriminative and interpretable patterns in sequences of surgical activities. Artif. Intell. Med. 82, 11–19 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Gouda, B. et al. Minimally-invasive surgery for liver metastases. Minerva Chir. 70(6), 429–436 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Felli, E., Baumert, T. & Pessaux, P. Is minimally invasive true anatomical HCC resection a future way to improve results in bridge or salvage liver transplantation?. Clin. Res. Hepatol. Gastroenterol. 1, 1 (2020).


    Google Scholar
     

  • Kang, S. H. et al. Laparoscopic liver resection versus open liver resection for intrahepatic cholangiocarcinoma: 3-year outcomes of a cohort study with propensity score matching. Surg. Oncol. 33, 63–69 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Guerrini, G. P. et al. Laparoscopic versus open liver resection for intrahepatic cholangiocarcinoma: The first meta-analysis. Langenbecks Arch. Surg. 405(3), 265–275 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Aghayan, D. L. et al. Laparoscopic versus open liver resection in the posterosuperior segments: A sub-group analysis from the OSLO-COMET randomized controlled trial. HPB 21(11), 1485–1490 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Abbaszadeh-Kasbi, A., & Reza Keramati, M. An Invited Commentary on “Perioperative outcomes comparing laparoscopic with open repeat liver resection for post-hepatectomy recurrent liver cancer: A systematic review and meta-analysis” (Int J Surg 2020; Epub ahead of print): Laparoscopic versus Open Repeat Liver Resection for Recurrent Liver Cancer. Int. J. Surg. 78, 70 (2020).

  • Buell, J. F. et al. Laparoscopic liver resection. J. Am. Coll. Surg. 200(3), 472–480 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Mala, T. et al. Laparoscopic liver resection: Experience of 53 procedures at a single center. J. Hepatobiliary Pancreat. Surg. 12(4), 298–303 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Are, C., Fong, Y., & Geller, D.A. Laparoscopic liver resections, in Advances in Surgery. 2005, Academic Press Inc. p. 57–75.

  • Fretland, Å. A. et al. Open versus laparoscopic liver resection for colorectal liver metastases (the Oslo-CoMet study): Study protocol for a randomized controlled trial. Trials 16, 1 (2015).

    Article 

    Google Scholar
     

  • Fretland, A. A. et al. Laparoscopic versus open resection for colorectal liver metastases. Ann. Surg. 267(2), 199–207 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Chopra, S. S. et al. Laparoscopic radiofrequency ablation of liver tumors: Comparison of MR guidance versus conventional laparoscopic ultrasound for needle positioning in a phantom model. Minim. Invasive Ther. Allied Technol. 20(4), 212–217 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Siperstein, A. et al. Laparoscopic radiofrequency ablation of primary and metastatic liver tumors: Technical considerations. Surg. Endosc. 14(4), 400–405 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Topal, B., Aerts, R. & Penninckx, F. Laparoscopic radiofrequency ablation of unresectable liver malignancies: Feasibility and clinical outcome. Surg. Laparosc. Endosc. Percutaneous Tech. 13(1), 11–15 (2003).

    Article 

    Google Scholar
     

  • Alemi, F. et al. Laparoscopic treatment of liver tumours using a two-needle probe bipolar radiofrequency ablation device. HPB 13(9), 656–664 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sheka, A. C. et al. Tumor lysis syndrome after laparoscopic microwave ablation of colorectal liver metastases. J. Gastrointest. Cancer 51(2), 631–635 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, S. J. et al. Percutaneous radiofrequency ablation for metachronous hepatic metastases after curative resection of pancreatic adenocarcinoma. Korean J. Radiol. 21(3), 316–324 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mertyna, P. et al. Thermal ablation: A comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model. Acad. Radiol. 16(12), 1539–1548 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mulier, S. et al. Radiofrequency ablation with four electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling—Influence of electric and activation mode on coagulation size and geometry. Surg. Oncol. 33, 145–157 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Melekhina, O. et al. Percutaneous radiofrequency-assisted liver partition versus portal vein embolization before hepatectomy for perihilar cholangiocarcinoma. BJS Open 4(1), 101–108 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schullian, P. et al. Simultaneous stereotactic radiofrequency ablation of multiple (≥ 4) liver tumors: Feasibility, safety, and efficacy. J. Vasc. Interv. Radiol. 31(6), 943–952 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Giulianotti, P. C. et al. Robotic liver surgery: Technical aspects and review of the literature. Hepatobiliary Surg. Nutr. 5(4), 311 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liebmann, P., & Neumuth, T. Model driven design of workflow schemata for the operating room of the future. in 40th Jahrestagung der Gesellschaft fur Informatik e.V. (GI): Service Science – Neue Perspektiven fur die Informatik, INFORMATIK 2010. 2010. Leipzig.

  • Kiran Kumar, P. & Khanna, V. Modular views on software architecture systems. Int. J. Civ. Eng. Technol. 8(2), 503–510 (2017).


    Google Scholar
     

  • Vidal-Silva, C. L. et al. Looking for a modular software development methodology: Blending of feature-oriented programming and aspect-oriented programming JPI. Inf. Technol. 30(3), 95–104 (2019).


    Google Scholar
     

  • Wang, Y. M. & Liu, H. W. The modularity condition for overlap and grouping functions. Fuzzy Sets Syst. 372, 97–110 (2019).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Sheen, A. J., Jamdar, S. & Siriwardena, A. K. Laparoscopic hepatectomy for colorectal liver metastases: The current state of the art. Front. Oncol. 9, 1 (2019).

    Article 

    Google Scholar
     

  • Cipriani, F. et al. Pure laparoscopic versus open hemihepatectomy: A critical assessment and realistic expectations—a propensity score-based analysis of right and left hemihepatectomies from nine European tertiary referral centers. J. Hepatobiliary Pancreat. Sci. 27(1), 3–15 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Kim, J. H. Laparoscopic anatomical segmentectomy using the transfissural Glissonean approach. Langenbecks Arch. Surg. 405(3), 365–372 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • She, W. H. et al. Anatomical versus nonanatomical resection for colorectal liver metastasis. World J. Surg. 1, 1 (2020).


    Google Scholar
     

  • Qi, L. N. et al. Outcomes of anatomical versus non-anatomical resection for hepatocellular carcinoma according to circulating tumour-cell status. Ann. Med. 52(1–2), 21–31 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalil, J. A. et al. Laparoscopic parenchymal-sparing hepatectomy: The new maximally minimal invasive surgery of the liver—a systematic review and meta-analysis. J. Gastrointest. Surg. 23(4), 860–869 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Deng, G. et al. Parenchymal-sparing versus extended hepatectomy for colorectal liver metastases: A systematic review and meta-analysis. Cancer Med. 8(14), 6165–6175 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aghayan, D. L. et al. Laparoscopic parenchyma-sparing liver resection for colorectal metastases. Radiol. Oncol. 52(1), 36–41 (2018).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar
     

  • da Costa, A. C. et al. Radiofrequency combined with immunomodulation for hepatocellular carcinoma: State of the art and innovations. World J. Gastroenterol. 26(17), 2040–2048 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bressem, K. K. et al. Exploring patterns of dynamic size changes of lesions after hepatic microwave ablation in an in vivo porcine model. Sci. Rep. 10, 1 (2020).

    Article 

    Google Scholar
     

  • Ajao, M. O. et al. Two-dimensional (2D) versus three-dimensional (3D) laparoscopy for vaginal cuff closure by surgeons-in-training: A randomized controlled trial. Surg. Endosc. 1, 1 (2019).


    Google Scholar
     

  • Aarts, B. M. et al. Percutaneous microwave ablation of histologically proven T1 renal cell carcinoma. Cardiovasc. Intervent. Radiol. 43(7), 1025–1033 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zimmerman, A., Grand, D. & Charpentier, K. P. Irreversible electroporation of hepatocellular carcinoma: Patient selection and perspectives. J. Hepatocell. Carcinoma 4, 49 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim, D. K. et al. Percutaneous cryoablation in early stage hepatocellular carcinoma: Analysis of local tumor progression factors. Diagn. Interv. Radiol. 26(2), 111–117 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cha, S. Y. et al. RF ablation versus cryoablation for small perivascular hepatocellular carcinoma: Propensity Score analyses of mid-term outcomes. Cardiovasc. Intervent. Radiol. 43(3), 434–444 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Mala, T. et al. Cryoablation of colorectal liver metastases: Minimally invasive tumour control. Scand. J. Gastroenterol. 39(6), 571–578 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Swierz, M. J. et al. Percutaneous ethanol injection for liver metastases. Cochrane Database Syst. Rev. 1, 2 (2020).


    Google Scholar
     

  • Chedid, M. F. et al. Transarterial embolization and percutaneous ethanol injection as an effective bridge therapy before liver transplantation for hepatitis c-related hepatocellular carcinoma. Gastroenterol. Res. Pract. 1, 1 (2016).

    Article 

    Google Scholar
     

  • Riemsma, R. P. et al. Percutaneous ethanol injection for liver metastases. Cochrane Database Syst. Rev. 1(5), 1 (2013).


    Google Scholar
     

  • Fretland, Å. A. et al. Open versus laparoscopic liver resection for colorectal liver metastases (the Oslo-CoMet Study): Study protocol for a randomized controlled trial. Trials 16(1), 1–10 (2015).

    Article 

    Google Scholar
     

  • Simon, C.J., D.E. Dupuy, and W.W. Mayo-Smith, Microwave ablation: principles and applications. Radiographics, 2005. 25(suppl_1): p. S69-S83.

  • Lencioni, R. & Crocetti, L. Image-guided thermal ablation of hepatocellular carcinoma. Crit. Rev. Oncol. Hematol. 66(3), 200–207 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Ryan, M. J. et al. Ablation techniques for primary and metastatic liver tumors. World J. Hepatol. 8(3), 191 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Glazer, D. I. et al. Percutaneous image-guided cryoablation of hepatic tumors: single-center experience with intermediate to long-term outcomes. AJR Am. J. Roentgenol. 209(6), 1381 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spinczyk, D. et al. Supporting diagnostics and therapy planning for percutaneous ablation of liver and abdominal tumors and pre-clinical evaluation. Comput. Med. Imaging Graph. 78, 101664 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Troisi, R. I. et al. Risk factors and management of conversions to an open approach in laparoscopic liver resection: analysis of 265 consecutive cases. HPB 16(1), 75–82 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Henken, K. R. et al. Implications of the law on video recording in clinical practice. Surg. Endosc. 26(10), 2909–2916 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Lecuyer, G. et al. Assisted phase and step annotation for surgical videos. Int. J. Comput. Assist. Radiol. Surg. 15(4), 673–680 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Twinanda, A. P. et al. Endonet: A deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Garrow, C. R. et al. Machine learning for surgical phase recognition: A systematic review. Ann. Surg. 273(4), 684–693 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dergachyova, O. et al. Automatic data-driven real-time segmentation and recognition of surgical workflow. Int. J. Comput. Assist. Radiol. Surg. 11(6), 1081–1089 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Loukas, C. Video content analysis of surgical procedures. Surg. Endosc. 32(2), 553–568 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Jannin, P. & Morandi, X. Surgical models for computer-assisted neurosurgery. Neuroimage 37(3), 783–791 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmad, M.O., & Raulamo-Jurvanen, P. Scientific Collaboration, Citation and Topic Analysis of International Conference on Agile Software Development Papers, in 3rd International Conference on Lean and Agile Software Development, LASD 2019, and the 7th Conference on Multimedia, Interaction, Design and Innovation, MIDI 2019, A. Przybylek and M.E. Morales-Trujillo, Editors. 2020, Springer. p. 108–132.

  • Vallon, R. et al. Systematic literature review on agile practices in global software development. Inf. Softw. Technol. 96, 161–180 (2018).

    Article 

    Google Scholar
     

  • Dingsoeyr, T., Falessi, D. & Power, K. Agile development at scale: The Next Frontier. IEEE Softw. 36(2), 30–38 (2019).

    Article 

    Google Scholar
     

  • Uemura, M. et al. Procedural surgical skill assessment in laparoscopic training environments. Int. J. Comput. Assist. Radiol. Surg. 11(4), 543–552 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Nakawala, H., Ferrigno, G. & De Momi, E. Development of an intelligent surgical training system for Thoracentesis. Artif. Intell. Med. 84, 50–63 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Schumann, S., Bühligen, U. & Neumuth, T. Outcome quality assessment by surgical process compliance measures in laparoscopic surgery. Artif. Intell. Med. 63(2), 85–90 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Volkov, M., et al. Machine learning and coresets for automated real-time video segmentation of laparoscopic and robot-assisted surgery. in 2017 IEEE international conference on robotics and automation (ICRA). 2017. IEEE.

  • Padoy, N. Machine and deep learning for workflow recognition during surgery. Minim. Invasive Ther. Allied Technol. 28(2), 82–90 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Forestier, G. et al. Surgical motion analysis using discriminative interpretable patterns. Artif. Intell. Med. 91, 3–11 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Forestier, G. et al. Surgical skills: Can learning curves be computed from recordings of surgical activities?. Int. J. Comput. Assist. Radiol. Surg. 13(5), 629–636 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Palomar, R. et al. Surface reconstruction for planning and navigation of liver resections. Comput. Med. Imaging Graph. 53, 30–42 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Zachariadis, O. et al. Accelerating B-spline interpolation on GPUs: Application to medical image registration. Comput. Methods Prog. Biomed. 1, 193 (2020).


    Google Scholar
     

  • Riediger, C. et al. First application of intraoperative MRI of the liver during ALPPS procedure for colorectal liver metastases. Langenbecks Arch. Surg. 405(3), 373–379 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sakata, K., Kijima, T. & Arai, O. Initial report: A novel intraoperative navigation system for laparoscopic liver resection using real-time virtual sonography. Sci. Rep. 10(1), 1 (2020).

    Article 

    Google Scholar
     

  • Luo, H. et al. Augmented reality navigation for liver resection with a stereoscopic laparoscope. Comput. Methods Programs Biomed. 1, 187 (2020).

    ADS 

    Google Scholar
     

  • Pérez de Frutos, J. et al. Laboratory test of Single Landmark registration method for ultrasound-based navigation in laparoscopy using an open-source platform. Int. J. Comput. Assist. Radiol. Surg. 13(12), 1927–1936 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Forestier, G. et al. Automatic matching of surgeries to predict surgeons’ next actions. Artif. Intell. Med. 81, 3–11 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Dergachyova, O., Morandi, X. & Jannin, P. Knowledge transfer for surgical activity prediction. Int. J. Comput. Assist. Radiol. Surg. 13(9), 1409–1417 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Related posts

    Thomasville manufacturer plans $5.5 million expansion, 25 new jobs in Davidson County

    scceu

    75th anniversary of Indonesia’s independence: Pertamina dedicated to advancing Indonesia – Inforial

    scceu

    His Dark Materials series two lays the ground for all-out war

    scceu