Supply Chain Council of European Union | Scceu.org
Distribution

Fine-scale topographic influence on the spatial distribution of tree species diameter in old-growth beech (Fagus orientalis Lipsky.) forests, northern Iran

  • Frelich, L. E. Forest Dynamics and Disturbance Regimes, Study from Every Green and Deciduous Temperate Forest 287 (Cambridge University Press, 2002).


    Google Scholar
     

  • Hadley, K. S. The role of disturbance, topography, and forest structure in the development of a montane forest landscape. J. Torrey Bot. Soc. 121(1), 47–61 (1994).


    Google Scholar
     

  • Gracia, M., Montane, F., Pique, J. & Retana, J. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manag. 242, 391–397 (2007).


    Google Scholar
     

  • Scheller, R. M. & Mladenoff, D. J. Understory species patterns and diversity in old-growth and managed northern hardwood forests. Ecol. Appl. 12(5), 1329–1343 (2002).


    Google Scholar
     

  • Sagheb-Talebi, K., Sajedi, T. & Pourhashemi, M. Forest of Iran, a Treasure from the Past, a Hope for the Future 145 (Springer, 2014).


    Google Scholar
     

  • Homami Totmaj, L., Alizadeh, K., Giahchi, P., Darvishi Khatooni, J. & Behling, H. Late Holocene Hyrcanian forest and environmental dynamics in the mid-elevated highland of the Alborz Mountains, northern Iran. Rev. Palaeobot. Palynol. 295, 104507 (2021).


    Google Scholar
     

  • Vakili, M. et al. Resistance and resilience of Hyrcanian mixed forests under natural and anthropogenic disturbances. Front. For. Glob. Change 4, 98 (2021).


    Google Scholar
     

  • Aguirre, O., Hui, G., von Gadow, K. & Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 183(1–3), 137–145 (2003).


    Google Scholar
     

  • Li, Y., Hui, G., Zhao, Z., Hu, Y. & Ye, S. Spatial structural characteristics of three hardwood species in Korean pine broad-leaved forest—Validating the bivariate distribution of structural parameters from the point of tree population. For. Ecol. Manag. 314, 17–25 (2014).


    Google Scholar
     

  • Condit, R. et al. Spatial patterns in the distribution of tropical tree species. Science 288(5470), 1414–8 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lü, C. et al. Population structure and spatial patterns of Haloxylon ammodendron population along the northwestern edge of Junggar basin. J. Desert Res. 32, 380–387 (2012).

    ADS 

    Google Scholar
     

  • Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Theodose, T. A. The influence of landform on the understory plant community in a temperate Beech forest in northern Iran. Ecol. Res. 30, 385–394 (2015).


    Google Scholar
     

  • Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Said-Pullicino, D. Slope Gradient and Shape Effects on Soil Profiles in the Northern Mountainous Forests of Iran. Euras. Soil Sci. 49(12), 1366–1374 (2016).

    ADS 

    Google Scholar
     

  • Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Said-Pullicino, D. The effect of landform on soil microbial activity and biomass in a Hyrcanian oriental beech stand. CATENA 149, 309–317 (2017).

    CAS 

    Google Scholar
     

  • Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Theodose, T. A. Tree species composition biodiversity and regeneration in response to catena shape and position in a mountain forest. Scand. J. For. Res. 32(1), 80–90 (2017).


    Google Scholar
     

  • Harms, K. E., Condit, R., Hubbell, S. P. & Foster, R. B. Habitat association of tree and shrubs in a 50-ha neotropical forest plot. J. Ecol. 89, 947–959 (2001).


    Google Scholar
     

  • Gunatilleke, C. V. S. et al. Species-habitat associations in a Sri Lank and ipterocap forest. J. Trop. Ecol. 22, 371–378 (2006).


    Google Scholar
     

  • Rubino, D. L. & McCarthy, B. C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. For. Ecol. Manag. 183, 221–238 (2003).


    Google Scholar
     

  • Mohsennezhad, M., Shokri, M., Zal, H. & Jafarian, Z. The effects of soil properties and physiographic factors on plant communities distribution in Behrestagh Rangeland. Rangeland 4(2), 262–275 (2010).


    Google Scholar
     

  • Sefidi, K., Esfandiary Darabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. IFOREST Biogeosci. For. 9, 658–665 (2016).


    Google Scholar
     

  • Valipour, A. et al. Relationships between forest structure and tree’s dimensions with physiographical factors in Armardeh forests (Northern Zagros). Iran. J. For. Poplar Res. 21(1), 30–47 (2013).


    Google Scholar
     

  • Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).


    Google Scholar
     

  • Naqinezhad, A. et al. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Change Biol. 28(3), 1103–1118 (2022).


    Google Scholar
     

  • Pelissaria, A. L. et al. Geostatistical modeling applied to spatiotemporal dynamics of successional tree species groups in a natural Mixed Tropical Forest. Ecol. Indic. 78, 1–7 (2017).


    Google Scholar
     

  • Pretzsch, H. & Zenner, E. K. Toward managing mixed-species stands: From parametrization to prescription. For. Ecosyst. 4, 19 (2017).


    Google Scholar
     

  • Yousefi, S. et al. Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. J. Hydrol. Hydromech. 66(1), 97–106 (2018).


    Google Scholar
     

  • Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).


    Google Scholar
     

  • Land Info, L. L. C. http://www.landinfo.com/country-iran.html. Accessed (2013).

  • Beven, K. J. & Kirkby, M. J. A. Physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du basin versant. Hydrol. Sci. J. 24(1), 43–69 (1979).


    Google Scholar
     

  • Bourgeron, P. S. Spatial aspects of vegetation structure. In Ecosystems of the World 14A—Tropical Rain Forest Ecosystems, Structure and Function (ed. Golley, F. B.) 29–47 (Elsevier, 1983).


    Google Scholar
     

  • Moeur, M. Characterizing spatial patterns of trees using stem-mapped data. For. Sci. 39(4), 756–775 (1993).

    ADS 

    Google Scholar
     

  • Chokkalingam, U. & White, A. Structure and spatial patterns of trees in old-growth northern hardwood and mixed forests of northern Maine. Plant Ecol. 156(2), 139–160 (2001).


    Google Scholar
     

  • Ferhat, K. A. R. A. Spatial patterns of longleaf pine (Pinus palustris Mill.): A case study. Euras. J. For. Sci. 9(3), 151–159 (2021).


    Google Scholar
     

  • Pommerening, A. Approaches to quantifying forest structures. Forestry 75(3), 305–324 (2002).


    Google Scholar
     

  • Pommerening, A. & Särkkä, A. What mark variograms tell about spatial plant interactions. Ecol. Model. 251, 64–72 (2013).


    Google Scholar
     

  • Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils. 27, 315–334 (1998).

    CAS 

    Google Scholar
     

  • Landim, P. M. B. & Sturaro, J. R. Krigagem indicativa aplicada à elaboração de mapas probabilísticos de riscos. Geomatematica, Texto didático, 6. DGA, IGCE, Universidade Estadual de São Paulo (UNESP), Rio Claro, São Paulo, Brazil. Available at: http://www.rc.unesp.br/igce/aplicada/textodi.html. Accessed 25/05/13 (2002).

  • Deutsch, C. V. & Journel, A. G. GSLIB: Geostatistical Software Library and User’s Guide 119 (Oxford University Press, 1992).


    Google Scholar
     

  • Oliver, M. A. & Webster, R. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geogr. Anal. 18, 227–242 (1986).


    Google Scholar
     

  • Zhao, Z., Ashraf, M. I. & Meng, F. R. Model prediction of soil drainage classes over a large area using a limited number of field samples: A case study in the province of Nova Scotia, Canada. Can. J. Soil Sci. 93(1), 73–83 (2013).


    Google Scholar
     

  • Brubaker, S. C., Jones, A. J., Lewis, D. T. & Frank, K. Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 57, 235–239 (1993).

    ADS 

    Google Scholar
     

  • Bellingham, P. J. & Tanner, E. V. J. The influence of topography on tree growth, mortality, and recruitment in a tropical Montane Forest. Biotropica 32(3), 378–384 (2000).


    Google Scholar
     

  • Luizao, R. C. C. et al. Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Glob. Change Biol. 10, 592–600 (2004).

    ADS 

    Google Scholar
     

  • Beaty, R. M. & Taylor, A. H. Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, southern cascades, California, USA. J. Biogeogr. 28, 955–966 (2001).


    Google Scholar
     

  • Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. For. Ecol. Manag. 234, 85–96 (2006).


    Google Scholar
     

  • Swanson, F. J., Kratz, T. K., Caine, N. & Woodmansee, R. G. Landform effects on eco-system patterns and processes. Biol. Sci. 38, 92–98 (1988).


    Google Scholar
     

  • Kooch, Y., Hosseini, S. M., Mohammadi, J. & Hojjati, S. M. Windthrow effects on biodiversity of natural forest ecosystem in local scale. Hum. Environ. 9(3), 65–72 (2011).


    Google Scholar
     

  • Köhl, M. & Gertner, G. Geostatistics in evaluating forest damage surveys: Considerations on methods for describing spatial distributions. For. Ecol. Manag. 95(2), 131–140 (1997).


    Google Scholar
     

  • Habashi, H., Hosseini, S. M., Mohammadi, J. & Rahmani, R. Stand structure and spatial pattern of trees in mixed Hyrcanian beech forests of Iran. Iran. J. For. Poplar Res. 15(1), 64–55 (2007).


    Google Scholar
     

  • Von Oheimb, G., Westphal, C., Tempel, H. & Härdtle, W. Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). For. Ecol. Manag. 212, 253–263 (2005).


    Google Scholar
     

  • Kunstler, G., Curt, T. & Lepart, J. Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands. Eur. J. For. Res. 123(4), 331–337 (2004).


    Google Scholar
     

  • Mosandl, R. & Kleinert, A. Development of oaks (Quercus petraea (Matt.) Liebl.) emerged from bird-dispersed seeds under old-growth pine (Pinus sylvestris L.) stands. For. Ecol. Manag. 106, 35–44 (1998).


    Google Scholar
     

  • Hosseini, A., Jafari, M. R. & Askari, S. Investigation and recognition of ecological characteristics of sites of Persian oak and pistachio old trees in forests of Ilam province. Wood Sci. Technol. 26(4), 113–128 (2019).


    Google Scholar
     

  • Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—A semi-natural forest in Denmark. For. Ecol. Manag. 406, 391–401 (2017).


    Google Scholar
     

  • Petritan, I. C., Marzano, R., Petritan, A. M. & Lingua, E. Overstory succession in a mixed Quercus petraeaFagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality. For. Ecol. Manag. 326, 9–17 (2014).


    Google Scholar
     

  • Watt, A. S. On the ecology of British Beech woods with special reference to their regeneration: Part II, sections II and III. The development and structure of beech communities on the Sussex downs. J. Ecol. 13, 27–73 (1925).


    Google Scholar
     

  • Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88, 3088–3102 (2007).

    PubMed 

    Google Scholar
     

  • Moradi, M., Marvie Mohadjer, M. R., Sefidi, K., Zobiri, M. & Omidi, A. Over matured beech trees (Fagus orientalis Lipsky.) component of close to nature forestry in northern Iran. J. For. Res. 23(2), 289–294 (2012).


    Google Scholar
     

  • Lan, G. Y. et al. Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, southwest China. Ecol. Res. 24, 1117–1124 (2009).

    ADS 

    Google Scholar
     

  • Lan, G., Hu, Y., Cao, M. & Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For. Ecol. Manag. 262(8), 1507–1513 (2011).


    Google Scholar
     

  • Menendez, I., Moreno, G., Fernando Gallardo Lancho, J. & Saavedra, J. Soil solution composition in forest soils of sierra de gata mountains, Central-Western Spain: Relationship with soil water content. Arid Land Res. Manag. 9(4), 495–502 (1995).


    Google Scholar
     

  • Kopecký, M., Macek, M. & Wild, J. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 757, 143785 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Delfan Abazari, B., Sagheb-Talebi, K. & Namiranian, M. Development stages and dynamic of undisturbed Oriental beech (Fagus orientalis Lipsky) stands in Kelardasht region (Iran). Iran. J. For. Poplar Res. 12, 307–326 (2004) ((in Persian)).


    Google Scholar
     

  • Sagheb-Talebi K., Delfan Abazari B. & Namiranian M. Description of decay stage in a natural Oriental beech (Fagus orientalis Lipsky) forest in Iran, preliminary results. In Natural Forests in the Temperate Zone of Europe – Values and Utilization (eds. Commarmot, B. & Hamor, F.D.), Proceedings of conference in Mukachevo, Oct 13–17, 130–134 (2003).

  • Christensen, M., Emborg, J. & Nielsen, A. B. The forest cycle of Suserup Skov: Revisited and revised. Ecol. Bull. 52, 33–42 (2007).


    Google Scholar
     

  • Dobrowolska, D. et al. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 84, 133–148 (2011).


    Google Scholar
     

  • Akhani, H., Djamali, M., Ghorbanalizadeh, A. & Ramezani, E. Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pak. J. Bot. 42(1), 231–258 (2010).


    Google Scholar
     

  • Pourmajidian, M. R. et al. Effect of shelterwood cutting method on forest regeneration and stand structure in a Hyrcanian forest ecosystem. J. For. Res. 21, 265–272 (2010).


    Google Scholar
     

  • Szwagrzyk, J. & Szewczyk, J. Tree mortality and effects of release from competition in an old-growth Fagus-Abies-Picea stand. J. Veg. Sci. 12, 621–626 (2001).


    Google Scholar
     

  • Janík, D. et al. Tree spatial patterns of Fagus sylvatica expansion over 37 years. For. Ecol. Manag. 375, 134–145 (2016).


    Google Scholar
     

  • Amiri, M. Dynamics of Structural Characteristics of a Natural Unlogged Fagus orientalis Lipsky Stand during a 5-year’s Period in Shast-Kalate Forest, Gorgan, Iran, Ph.D. Dissertation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan (2013) (in Persian).

  • Soofi, M. Effects of anthropogenic pressure on large mammal species in the Hyrcanian forest, Iran: Effects of poaching, logging and livestock grazing on large mammals (Doctoral dissertation, Dissertation, Göttingen, Georg-August Universität, 2018).

  • Related posts

    Performance Food Group Company: Cheap Enough To Offer Upside

    scceu

    Former member of Bowser’s office faces child pornography charge

    scceu

    James Caan, Oscar nominee for ‘The Godfather,’ dies at 82

    scceu