Supply Chain Council of European Union | Scceu.org
Procurement

Electromagnetic sensing and infiltration measurements to evaluate turfgrass salinity and reclamation

  • Corwin, D. L. & Lesch, S. M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 46, 11–43 (2005).


    Google Scholar
     

  • Akramkhanov, A., Lamers, J. P. A. & Martius, C. Conversion factors to estimate soil salinity based on electrical conductivity for soils in Khorezm region, Uzbekistan. In Sustainable Management of Saline Waters and Salt-Affected Soils for Agriculture (ed. Qadir, S. et al.) 19–25 (Syria, 2009).

  • Boettinger, J. L., Doolittle, J. A., West, N. E., Bork, E. W. & Schupp, E. W. Nondestructive assessment of rangeland soil depth to petrocalcic horizon using electromagnetic induction. Arid. Land Res. Manag. 11, 372–390 (1997).


    Google Scholar
     

  • Herrero, J., Ba, A. A. & Aragues, R. Soil salinity and its distribution determined by soil sampling and electromagnetic techniques. Soil Use Manag. 19, 119–126 (2003).


    Google Scholar
     

  • Corwin, D. L. Past, present, and future trends in soil electrical conductivity measurements using geophysical methods. In Handbook of Agricultural Geophysics (eds. Allred, B. J., Daniels, J. J. & Ehsani, M. R.) 17–44 (Boca Raton, 2008).

  • Triantafillou, J., Lesch, S. M., La Lau, K. & Buchanan, S. M. Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Aust. J. Soil Res. 47, 651–663 (2009).


    Google Scholar
     

  • Lardo, E., Arous, A., Palese, A. M., Nuzzo, V. & Celano, G. Electromagnetic induction: A support tool for the evaluation of soil CO2 emissions and soil organic carbon content in olive orchards under semi-arid conditions. Geoderma 264, 188–194 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Yao, R. J. et al. Geostatistical monitoring of soil salinity for precision management using proximally sensed electromagnetic induction (EMI) method. Environ. Earth Sci. 75(20), 1362. https://doi.org/10.1007/s12665-016-6179-z (2016).

    CAS 

    Google Scholar
     

  • Corwin, D. L. & Lesch, S. M. Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling. J. Environ. Eng. Geophys. 18(1), 1–25 (2013).


    Google Scholar
     

  • Heil, K. & Schmidhalter, U. The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors. 17, 2540 (2017).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Rhoades, J. D., Corwin, D. L. & Lesch, S. M. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In Assessment of Non-point Source Pollution in the Vadose Zone (eds. Corwin, D. L., Loague, K. & Ellsworth, T. R.) 197–215 (Geophysical Monogram, 1999).

  • Sadler, E. J., Camp, C. R. & Evans, R. G. New and future technology. In Irrigation of Agricultural Crops (eds. Steward, B. A. & Nelson, D. R.) 609–626 (Agronomy Monograph, 2007).

  • Carrow, R. N., Krum, J. M., Flitcroft, I. & Cline, V. Precision turfgrass management: Challenges and field application for mapping turfgrass soil and stress. Precis. Agric. 11, 115–134 (2010).


    Google Scholar
     

  • Devitt, D. A., Lockett, M. & Bird, B. M. Spatial and temporal distribution of salts on fairways and greens irrigated with reuse water. Agronomy 99, 692–700 (2007).


    Google Scholar
     

  • Corwin D.L., Lesch S.M. & Lobell D.B. Laboratory and field measurements. In Agricultural Salinity Assessment and Management (eds. Wallender, W. W. & Tanji, K. K.) (2012).

  • Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-RSSD version 2.30R. User manual and tutorial guide. Res. Report 148 in USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).

  • Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-SaltMapper version 2.30R. User manual and tutorial guide. Res. Report 149 USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).

  • Lesch, S. M., Rhoades, J. D. & Corwin, D. L. ESAP-95 Version 2.01R: User manual and tutorial guide. Res. Rep. 146. USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2000).

  • Lesch, S. M., Strauss, D. J. & Rhoades, J. D. Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: A comparison of multiple linear regression and cokriging. Water Resour. Res. 31, 373–386 (1995).

    ADS 

    Google Scholar
     

  • Amezketa, E. Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: A case study. Span. J. Agric. Res. 5(1), 91–101 (2007).


    Google Scholar
     

  • Grieve C. M., Grattan, S. R. & Mass, E. V. Plant salt tolerance. In Agricultural Salinity Assessment and Management (eds. Walender W. W. & Tanji K.K.) (ASCE, 2012).

  • Shahba, M. Interaction effects of salinity and mowing on performance and physiology of bermudagrass cultivars. Crop Sci. 50, 2620–2631 (2010).


    Google Scholar
     

  • Marcum, K. B. & Pessarakli, M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. Crop Sci. 46, 2571–2574 (2006).


    Google Scholar
     

  • Xiang, M., Moss, J. Q., Martin, D. L., Su, K. & Dunn, B. L. Evaluating the salinity tolerance of clonal-type bermudagrass cultivars and an experimental selection. Hortic. Sci. 51(1), 185–191 (2017).


    Google Scholar
     

  • Ganjegunte, G. K. et al. Soil salinity of an urban park after long term irrigation with saline ground water. Agronomy 109, 3011–3018 (2017).

    CAS 

    Google Scholar
     

  • Keren, R. & Miyamoto, S. Reclamation of saline, sodic and boron affected soils. In Agricultural Salinity Assessment and Management (eds. Walender W. W. & Tanji K. K.) (ASCE, 2012).

  • Thomas, G. W. & Phillips, R. E. Consequences of water-movement in macropores. J. Environ. Qual. 8, 149–152 (1979).


    Google Scholar
     

  • White, R. E. The influence of macropores on the transport of dissolved and suspended matter through soil. In Advances in Soil Science (ed. Stewart, B. A.) 95–120 (Springer, 1985).

  • Workman, S. & Skaggs, R. PREFLO: A water management model capable of simulating preferential flow. Trans. ASAE. 33, 1939–1948 (1990).


    Google Scholar
     

  • Huang, B., Duncan, R. R. & Carrow, R. N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. Crop Sci. 7(6), 863–1869 (1997).


    Google Scholar
     

  • Liu, X. H. & Huang, B. R. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. Crop Sci. 42, 466–472 (2002).

    CAS 

    Google Scholar
     

  • Related posts

    Global Boehmite Market 2020 – Impact of COVID-19, Future Growth Analysis and Challenges

    scceu

    StormGeo expands with bunker procurement optimization through the acquisition of BunkerMetric

    scceu

    IoT Procurement Market Top Key Players, Product Types and Applications Analysis 2021-2027 – NeighborWebSJ

    scceu