Supply Chain Council of European Union | Scceu.org
Supply Chain Risk

Challenges in the control of COVID-19 outbreaks caused by the delta variant during periods of low humidity: an observational study in Sydney, Australia | Infectious Diseases of Poverty

During the outbreak of COVID-19 in Sydney, beginning June 2021 and caused by the B.1.617.2 (delta) variant of SARS-CoV-2, low humidity was consistently associated with reported cases. Furthermore, and with implications for the response to outbreaks caused by the delta variant, we identified a threshold effect of low relative humidity (< 70%) whereby warmer, drier conditions might promote transmission of the SARS-CoV-2 delta variant. In addition to vaccination, stronger implementation of other interventions—such as mask-wearing and social distancing—might need to be considered during these risk periods to control outbreaks of COVID-19 caused by the delta variant.

Previously, in 2020, we identified a relationship between the original SARS-CoV-2 and relative humidity [8, 9]. In these earlier studies, a 1% decrease in relative humidity was predicted to increase cases in the range of 6–8%. In contrast, in the current study in the univariable model which included 9:00 am humidity, a 1% decrease in relative humidity was predicted to increase cases by 16.9% (setting 9:00 am temperature at its median value). Although outbreaks in Sydney in 2020 and 2021 cannot be directly compared, results suggest that the influence of humidity on transmission of the delta variant might be greater than that for the original SARS-CoV-2. The SARS-CoV-2 delta variant emerged recently and it has spread globally. Reports suggest that it might be more than twice as transmissible as the original SARS-CoV-2 that emerged in 2019–2020 [22]. To our knowledge there are no published studies specifically focusing on the relationship between transmission of the delta variant and weather. Further studies are needed to confirm the stronger association found in this study between transmission of the delta variant and humidity, and whether increased transmissibility might be partly explained by weather factors. This might provide useful information for policymakers to control transmission of the delta variant, for example by increasing indoors relative humidity to more than 70% in high-risk environments during times of the year in which transmission of this variant is favored.

The effect of humidity on transmission of SARS-CoV-2 virus has received substantial attention during 2020 and 2021, including studies conducted in Bangladesh [10] and China [4, 23, 24], and systematic reviews on the topic [25]. However, no consistent conclusion has been made. In several studies from 166 countries [24], China and the US [26] and Bangladesh [10], high relative humidity was found to be associated with a reduction in the daily number of COVID-19 cases or the effective reproductive number of SARS-CoV-2. In 30 Chinese provincial capitals, Liu et al. [23] found that low humidity likely favors SARS-CoV-2 transmission. In addition, using quantitative time-series analysis techniques, Qi et al. [4] estimated that for every 1% increase in relative humidity, daily confirmed cases decreased by 11% to 22% when temperature was in the range of 5.04‒8.2 °C. In the current study, we also found that humidity was negatively related to daily COVID-19 cases and was a stable driver of SARS-CoV-2 transmission, consistent with the above studies. However, the observed relationship between COVID-19 cases and humidity has not always been consistent; for example, this relationship was found to be heterogeneous between different cities in China [12], and in a global study of 190 countries an inverse J-shaped relationship was found between relative humidity and COVID-19 incidence, in which risk was greatest at 72% relative humidity [7]. It is likely that a range of other factors influences the relationship between transmission of SARS-CoV-2 and humidity, particularly climatic zone. Also, the various control strategies implemented—such as mandatory mask-wearing, social distancing, testing and vaccination—make characterization of the relationship between weather factors and SARS-CoV-2 transmission within outbreak situations challenging.

The relationship between temperature and COVID-19 cases has not yet been fully characterized. In a study in China, no relationship between temperature and COVID-19 cases was found [27]. A negative correlation between temperature and COVID-19 cases—less transmission at higher temperatures—has been reported by Xie et al. [28] and Notari et al. [29]. However, in our study, a positive correlation between temperature and COVID-19 cases caused by the SARS-CoV-2 delta variant was found, but only in the situation when relative humidity values are around 70% or lower. This is consistent with positive associations between average temperature and daily COVID-19 cases reported in nine Asian cities [30].

The interactions among weather factors might provide a reasonable explanation for the above contradictory results. Previous research has suggested a potential interaction between relative humidity and temperature and COVID-19 case reports, but the exact mechanism of the interaction is unclear [4]. This might be due to both temperature and humidity affecting the function of the respiratory mucosa as a barrier to the virus and infection, and hence affecting the spread of SARS-CoV-2 [31]. The same phenomenon has been previously described in influenza studies: temperature was inversely associated with influenza and the relationship could be modified by humidity [32]. Hence the suggestion has been made that COVID-19 might develop into a seasonal disease [33]. However, studies on the correlation between weather factors such as temperature and humidity and their interaction and transmission of the SARS-CoV-2 delta variant have not yet been reported, and further research is urgently needed to support policy and control. Our results suggest that weather could be a more important consideration during outbreaks of this delta variant. Therefore, it is important in future research to focus on those specific periods in which transmission might be increased to better understand the mechanisms involved and how public health advice and interventions might be targeted. Given the advances that have been made in forecasting seasonal influenza outbreaks [34], the same approach can be anticipated for seasonal COVID-19 once the mechanisms of spread are better understood.

In this study we assumed that cases were infected within their LHD and that temperature and humidity measured at meteorological recording stations was a proxy for the conditions experienced when transmission occurred. More precise measures of exposure are difficult to access in the field and within an outbreak setting. Temperature and humidity measurements represent outdoors conditions, and so are a proxy for the conditions experienced by the population exposed to infection. We also assumed that case reporting in this outbreak was high and that differential bias was not present. During this outbreak high levels of testing occurred—an average daily testing rate of > 80,000 tests were reported—and confirmation rates remained consistent [16], so reporting bias is likely small. Although observational studies such as the current one suffer from measurement and information biases, the coherence of evidence from a growing number of studies strengthens the hypothesis that SARS-CoV-2 transmission is influenced by weather.

Related posts

Taxi driver whose licence was revoked still working in St Helens, councillor claims

scceu

Somalia Humanitarian Bulletin, October 2021 – Somalia

scceu

8 issues that will impact investors in 2021: experts

scceu