Supply Chain Council of European Union | Scceu.org
Supply Chain Risk

Birds adapted to cold conditions show greater changes in range size related to past climatic oscillations than temperate birds

  • Hewitt, G. M. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Drovetski, S. V. et al. A test of the European Pleistocene refugial paradigm, using a Western Palaearctic endemic bird species. Proc. R. Soc. B 285, 20181606 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Newton, I. Speciation and Biogeography of Birds (Academic Press, 2003).


    Google Scholar
     

  • Pellegrino, I. et al. Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156, 639–657 (2014).

    Article 

    Google Scholar
     

  • Tietze, D. T. Bird Species: How they Arise, Modify and Vanish (Springer Nature, 2018).

    Book 

    Google Scholar
     

  • Carrera, L., Pavia, M., Peresani, M. & Romandini, M. Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate. Boll. Soc. Paleontol. I(57), 145–174 (2018).


    Google Scholar
     

  • Carrera, L., Pavia, M., Romandini, M. & Peresani, M. Avian fossil assemblages at the onset of the LGM in the eastern Alps: a palaecological contribution from the Rio Secco Cave (Italy). C. R. Palevol 17, 166–177 (2018).

    Article 

    Google Scholar
     

  • Carrera, L., Scarponi, D., Martini, F., Sarti, L. & Pavia, M. Mid-Late Pleistocene Neanderthal landscapes in southern Italy: paleoecological contributions of the avian assemblage from Grotta del Cavallo, Apulia, southern Italy. Palaeogeogr. Palaeocl. 567, 110256 (2021).

    Article 

    Google Scholar
     

  • Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Hampe, A. & Jump, A. S. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. S. 42, 313–333 (2011).

    Article 

    Google Scholar
     

  • Holm, S. R. & Svenning, J. C. 180,000 years of climate change in Europe: avifaunal responses and vegetation implications. PLoS ONE 9, e94021 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanchez Marco, A. Avian zoogeographical patterns during the Quaternary in the Mediterranean region and paleoclimatic interpretation. Ardeola 51, 91–132 (2004).


    Google Scholar
     

  • Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. S. 40, 677–697 (2009).

    Article 

    Google Scholar
     

  • Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37–54 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).

    Article 

    Google Scholar
     

  • Svenning, J. C., Fløjgaard, C., Marske, K. A., Nogues-Bravo, D. & Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 30, 2930–2947 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeocl. 310, 451–463 (2011).

    Article 

    Google Scholar
     

  • Arcones, A., Ponti, R., Ferrer, X. & Vieites, D. R. Pleistocene glacial cycles as drivers of allopatric differentiation in Arctic shorebirds. J. Biogeogr. 48, 747–759 (2021).

    Article 

    Google Scholar
     

  • Kozma, R., Melsted, P., Magnússon, K. P. & Höglund, J. Looking into the past–the reaction of three grouse species to climate change over the last million years using whole genome sequences. Mol. Ecol. 25, 570–580 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Lagerholm, V. K. et al. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds. Glob. Change Biol. 23, 1425–1435 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Metcalf, J. L. et al. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study. Proc. R. Soc. B 281, 20132782. https://doi.org/10.1098/rspb.2013.2782 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perktaş, U., Peterson, A. T. & Dyer, D. Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J. Ornithol. 158, 1–13 (2017).

    Article 

    Google Scholar
     

  • Perktaş, U., De Silva, T. N., Quintero, E. & Tavşanoğlu, Ç. Adding ecology into phylogeography: ecological niche models and phylogeography in tandem reveals the demographic history of the subalpine warbler complex. Bird Study 66, 234–242 (2019).

    Article 

    Google Scholar
     

  • Fløjgaard, C., Normand, S., Skov, F. & Svenning, J. C. Ice age distributions of European small mammals: insights from species distribution modelling. J. Biogeogr. 36, 1152–1163 (2009).

    Article 

    Google Scholar
     

  • Lima-Ribeiro, M. S., Varela, S., Nogués-Bravo, D. & Diniz-Filho, J. A. F. Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Nat. Conserv. 10, 145–151 (2012).

    Article 

    Google Scholar
     

  • Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).

    Article 

    Google Scholar
     

  • Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Waltari, E. et al. Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE 2, e563 (2007).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Barrientos, R. et al. Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling. Mol. Ecol. 23, 390–407 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Huntley, B. & Green, R. E. Bioclimatic models of the distributions of Gyrfalcons and ptarmigan. In Gyrfalcons and Ptarmigan in a Changing World Vol. II (eds Watson, R. T. et al.) 329–338 (The Peregrine Fund, 2011).


    Google Scholar
     

  • Huntley, B., Allen, J. R. M., Barnard, P., Collingham, Y. C. & Holliday, P. R. Species distribution models indicate contrasting late-Quaternary histories for Southern and Northern Hemisphere bird species. Glob. Ecol. Biogeogr. 22, 277–288 (2013).

    Article 

    Google Scholar
     

  • Kiss, O. et al. Past and future climate-driven shifts in the distribution of a warm-adapted bird species, the European Roller Coracias garrulus. Bird Study 67, 143–159 (2020).

    Article 

    Google Scholar
     

  • Koparde, P., Mehta, P., Mukherjee, S. & Robin, V. V. Quaternary climatic fluctuations and resulting climatically suitable areas for Eurasian owlets. Ecol. Evol. 9, 4864–4874 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peterson, A. T. & Ammann, C. M. Global patterns of connectivity and isolation of populations of forest bird species in the late Pleistocene. Glob. Ecol. Biogeogr. 22, 596–606 (2013).

    Article 

    Google Scholar
     

  • Peterson, A. T., Martínez-Meyer, E. & González-Salazar, C. Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Divers. Distrib. 10, 237–246 (2004).

    Article 

    Google Scholar
     

  • Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Lack of evidence of a Pleistocene migratory switch in current bird long-distance migrants between Eurasia and Africa. J. Biogeogr. 47, 1564–1573 (2020).

    Article 

    Google Scholar
     

  • Ruegg, K. C., Hijmans, R. J. & Moritz, C. Climate change and the origin of migratory pathways in the Swainson’s thrush Catharus ustulatus. J. Biogeogr. 33, 1172–1182 (2006).

    Article 

    Google Scholar
     

  • Smith, S. E., Gregory, R. D., Anderson, B. J. & Thomas, C. D. The past, present and potential future distributions of cold-adapted bird species. Divers. Distrib. 19, 352–362 (2013).

    Article 

    Google Scholar
     

  • Sutton, L. J. et al. Geographic range estimates and environmental requirements for the harpy eagle derived from spatial models of current and past distribution. Ecol. Evol. 11, 481–497 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Varela, S., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Storch, D. Differential effects of temperature change and human impact on European Late Quaternary mammalian extinctions. Glob. Change Biol. 21, 1475–1481 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Scridel, D. et al. Thermal niche predicts recent changes in range size for bird species. Clim. Res. 73, 207–216 (2017).

    Article 

    Google Scholar
     

  • Barnagaud, J. Y. et al. Relating Habitat and Climatic Niches in Birds. PLoS Biol. 7, e32819 (2012).

    CAS 
    ADS 

    Google Scholar
     

  • Devictor, V., Julliard, R., Jiguet, F. & Couvet, D. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. Lond. [Biol.] 275, 2743–2748 (2008).


    Google Scholar
     

  • Gaüzère, P., Jiguet, F. & Devictor, V. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Glob. Change Biol. 21, 3367–3378 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jiguet, F., Gadot, A., Julliard, R., Newson, S. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1673–1685 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. R. Soc. Lond. [Biol.] 277, 3601–3608 (2010).


    Google Scholar
     

  • Jiguet, F. et al. Population trends of European common birds are predicted by characteristics of their climatic niche. Glob. Change Biol. 16, 497–505 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Lindström, Å., Green, M., Paulson, G., Smith, H. G. & Devictor, V. Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography 36, 313–322 (2013).

    Article 

    Google Scholar
     

  • Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • BirdLife International. Crex crex. The IUCN Red List of Threatened Species 2016: e.T22692543A86147127. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22692543A86147127.en (2016).

  • BirdLife International. Perdix perdix. The IUCN Red List of Threatened Species 2016: e.T22678911A85929015. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22678911A85929015.en (2016).

  • BirdLife International. Pyrrhocorax graculus. The IUCN Red List of Threatened Species 2016: e.T22705921A87386602. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22705921A87386602.en (2016).

  • BirdLife International. Coturnix coturnix. The IUCN Red List of Threatened Species 2018: e.T22678944A131904485. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22678944A131904485.en (2018).

  • BirdLife International. Athene noctua. The IUCN Red List of Threatened Species 2019: e.T22689328A155470112. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22689328A155470112.en (2019).

  • BirdLife International. Bubo scandiacus. The IUCN Red List of Threatened Species 2020: e.T22689055A181375387. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22689055A181375387.en (2020).

  • Cramp, S. The Complete Birds of the Western Palearctic on CD-ROM (Oxford University Press, 1998).


    Google Scholar
     

  • Tyrberg, T. Pleistocene Birds of the Palearctic: A Catalogue. (Publications of the Nuttall Ornithological Club No. 27, 1998).

  • Tyrberg, T. Pleistocene Birds of the Palaearctic. http://web.telia.com/~u11502098/pleistocene.pdf (2008).

  • Pellegrino, I. et al. Evidence for strong genetic structure in European populations of the little owl Athene noctua. J. Avian Biol. 46, 462–475 (2015).

    Article 

    Google Scholar
     

  • van Nieuwenhuyse, D., Génot, J. C. & Johnson, D. H. The Little Owl: Conservation, Ecology and Behavior of Athene noctua (Cambridge University Press, 2008).


    Google Scholar
     

  • Dupont, L. M. Vegetation zones in NW Africa during the Brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Hoag, C. & Svenning, J. C. African environmental change from the Pleistocene to the Anthropocene. Annu. Rev. Env. Resour. 42, 27–54 (2017).

    Article 

    Google Scholar
     

  • Hoelzmann, P. et al. Palaeoenvironmental changes in the arid and sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present. In Past Climate Variability Through Europe and Africa (eds Battarbee, R. W. et al.) 219–256 (Springer, 2004).

    Chapter 

    Google Scholar
     

  • Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bech, N., Novoa, C., Allienne, J. F., Boissier, J. & Bro, E. Quantifying genetic distance between wild and captive strains of the grey partridge Perdix perdix in France: conservation implications. Biodivers. Conserv. 29, 609–624 (2020).

    Article 

    Google Scholar
     

  • Liukkonen-Anttila, T., Uimaniemi, L., Orell, M. & Lumme, J. Mitochondrial DNA variation and the phylogeography of the grey partridge (Perdix perdix) in Europe: from Pleistocene history to present day populations. J. Evolut. Biol. 15, 971–982 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Potapova, O. Snowy owl Nyctea scandiaca (Aves: Strigiformes) in the Pleistocene of the Ural Mountains with notes on its ecology and distribution in the Northern Palearctic. Deinsea 8, 103–126 (2001).


    Google Scholar
     

  • Mourer-Chauviré, C. Les oiseaux du Pléistocène moyen et supérieur de France. Doc. Lab. Géol. Fac. Sci. Lyon 64, 1–624 (1975).


    Google Scholar
     

  • Mourer-Chauviré, C. Les oiseaux dans les habitats pale´olithiques: gibier des hommes ou proies des rapaces? In Animal and Archaeology: 2. Shell Middens, Fishes and Birds (eds Grigson, C. & Clutton-Brock, J.) 111–124 (British Archaeological Reports International Series 183, 1983).


    Google Scholar
     

  • Meijer, H. J., Pavia, M., Madurell-Malapeira, J. & Alba, D. M. A revision of fossil eagle owls (Aves: Strigiformes: Bubo) from Europe and the description of a new species, Bubo ibericus, from Cal Guardiola (NE Iberian Peninsula). Hist. Biol. 29, 822–832 (2017).

    Article 

    Google Scholar
     

  • Sanchez Marco, A. Aves fósiles de la Península Ibérica, Canarias y Baleares: balance de los estudios realizados. Investig. Rev. PH Inst. Andal. Patrim. Hist. 94, 154–181 (2018).


    Google Scholar
     

  • Sardella, R. et al. Grotta Romanelli (Southern Italy, Apulia): legacies and issues in excavating a key site for the Pleistocene of the Mediterranean. Riv. Ital. Paleontol. S. 124, 247–264 (2018).


    Google Scholar
     

  • Rustioni, M., Ferretti, M. P., Mazza, P., Pavia, M. & Varola, A. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. Deinsea 9, 395–404 (2003).


    Google Scholar
     

  • Bedetti, C. & Pavia, M. Reinterpretation of the Late Pleistocene Ingarano Cave deposit based on the fossil bird association (Apulia, South-eastern Italy). Riv. Ital. Paleontol. S. 113, 487–507 (2007).


    Google Scholar
     

  • Tyrberg, T. Arctic, montane and steppe birds as glacial relicts in West Palearctic. Ornithol. Verh. 25, 29–49 (1991).


    Google Scholar
     

  • Bruderer, B. & Salewski, V. Evolution of bird migration in a biogeographical context. J. Biogeogr. 35, 1951–1959 (2008).

    Article 

    Google Scholar
     

  • Finlayson, C. Avian Survivors. The History and Biogeography of Palearctic Birds (T. & A.D. Poyser, 2011).


    Google Scholar
     

  • Louchart, A. Emergence of long distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95, 1109–1119 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Somveille, M. et al. Simulation-based reconstruction of global bird migration over the past 50,000 years. Nat. Commun. 11, 1–9 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fiedler, W. Recent changes in migratory behaviour of birds: a compilation of field observations and ringing data. In Avian Migration (eds Berthold, P. et al.) 21–38 (Springer, 2003).

    Chapter 

    Google Scholar
     

  • Milá, B., Smith, T. B. & Wayne, R. K. Postglacial population expansion drives the evolution of long-distance migration in a songbird. Evolution 60, 2403–2409 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Zink, R. M. The evolution of avian migration. Biol. J. Linn. Soc. 104, 237–250 (2011).

    Article 

    Google Scholar
     

  • Zink, R. M. & Gardner, A. S. Glaciation as a migratory switch. Sci. Adv. 3, e1603133 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Matthiesen, D. G. Avian medullary bone in the fossil record, an example from the Early Pleistocene of Olduvai Gorge, Tanzania. J. Vertebr. Paleontol. 9, 34A (1990).


    Google Scholar
     

  • Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).

    Article 

    Google Scholar
     

  • Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).

    Article 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database, Version 26. https://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html (2019).

  • d’Errico, F., Banks, W. E., Vanhaeren, M., Laroulandie, V. & Langlais, M. PACEA geo-referenced radiocarbon database. Paleoanthropology https://doi.org/10.4207/PA.2011.ART40 (2011).

    Article 

    Google Scholar
     

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).

    Article 

    Google Scholar
     

  • Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1897. https://doi.org/10.2458/azu_js_rc.55.16947 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Serjeantson, D. Birds: a seasonal resource. Environ. Archaeol. 3, 23–33 (1998).

    Article 

    Google Scholar
     

  • Serjeantson, D. Birds. Cambridge Manuals in Archaeology (Cambridge University Press, 2009).


    Google Scholar
     

  • Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Inform. 10, 1–21 (2015).

    Article 

    Google Scholar
     

  • Varela, S., Lima-Ribeiro, M. S. & Terribile, L. C. A short guide to the climatic variables of the last glacial maximum for biogeographers. PLoS ONE 10, e0129037 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar
     

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T. & Taylor, P. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar. Ecol. Prog. Ser. 321, 267–281 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Leathwick, J. R., Elith, J., Chadderton, W. L., Rowe, D. & Hastie, T. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. J. Biogeogr. 35, 1481–1497 (2008).

    Article 

    Google Scholar
     

  • Therneau, T. & Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart (2019).

  • Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret (2021).

  • Related posts

    Afghanistan is facing a climate calamity – it’s time the world took notice | Shadi Khan Saif

    scceu

    CITES Parties and observers to meet in Lyon ahead of the next World Wildlife Conference

    scceu

    Bad B.C. fire seasons can come in bunches, but so can quiet ones

    scceu