Supply Chain Council of European Union | Scceu.org
News

A Resilient Covid-19 Vaccine Supply Chain Starts Now

Gotta bleed the crabs now.

Photographer: Timothy Fadek/Corbis Historical/Getty Images

We’ve already seen the costs of supply-chain failures during the Covid-19 pandemic: Delays in the production of simple nasal swabs slowed testing by months even as the pandemic exploded in the U.S. The world is now eagerly awaiting a vaccine, and will need billions of doses as quickly as possible. If the vaccine supply chain fails, the economic and human cost of Covid-19 will be prolonged.

The multilinked vaccine production chain will take months to set up, which means starting now. Some parts are already seeing investment — glass manufacturers, for example, are ramping up production of vials. But the supply of less obvious inputs needed earlier in the chain is uncertain.

Vaccine supply chains contain some unusual links, including horseshoe crab blood, shark liver oil and an enzyme that’s one of the world’s most expensive products. Other links rely on novel manufacturing processes that have not yet been implemented at scale. Each link in the chain needs to be stress-tested and strengthened. For the potential weak spots, alternative manufacturing processes need to be considered and prepared.

Vaccines manufacturing requires a long series of biological processes, and avoiding contamination is crucial. Endotoxins, which are dangerous molecules shed by bacteria, are one source of contamination. To detect them, each batch of vaccine, along with its vials and stoppers, is tested with a substance called Limulus amebocyte lysate. The only known natural source of LAL is horseshoe crab blood — which means that the supply varies year to year, and we have to be careful not to deplete the crab population. Luckily, a synthetic version of LAL has recently been developed and approved by the U.S. Food and Drug Administration and the European health ministry. But companies need time to validate and prepare production to be ready for a Covid-19 vaccine.

Shark livers are another surprising link in the supply chain for some vaccines. The shark liver oil squalene, which is mostly used in cosmetics and sunscreens, is part of a vaccine adjuvant — a factor that accompanies a vaccine and amplifies its effects by giving an extra stimulus to the immune system. We should be able to repurpose squalene from the cosmetic market to aid in vaccine production, but it might be even better to use synthetic squalene. That can be produced under highly controlled conditions, but again, we need to prepare the production processes now. We don’t want vaccine delivery to fail because we don’t have enough shark liver oil.

Traditional vaccines work by exposing the body’s immune system to a virus that has been weakened or killed; then, when the vaccinated immune system meets the dangerous version of the virus, it’s been trained to fight back. Recently, entirely new types of vaccines have been developed that use DNA and mRNA. These vaccines copy pieces of the virus’s genetic material and then program the body’s own cells to produce the immune-training antigens. This approach is faster and more standardized than traditional vaccines, and it has the potential to be especially safe because it doesn’t involve exposing subjects to the virus.

DNA and mRNA vaccine technologies have shown promising results, and two of the leading vaccine contenders, from Pfizer Inc. and Moderna Inc., use mRNA technology. But mRNA has never been used to produce a commercial vaccine for humans, let alone at scale. And scaling these technologies may not be easy. In particular, mRNA degrades rapidly. To prevent this, it must be “capped” by a very rare substance called vaccinia capping enzyme.

Just over 10 pounds of this VCE is enough to produce a hundred million doses of an mRNA vaccine — but the current manufacturing processes for VCE require so much bioreactor capacity that making 10 pounds would cost about $1.4 billion. More important, global bioreactor capacity cannot support production at that level while also producing other vaccines and cancer-fighting drugs.

If we work hard now, we may be able to find more efficient means of producing VCE. Expanding bioreactor production and repurposing bioreactors from existing large-scale industrial applications will also help to lessen the pressure on the supply chains for multiple types of vaccines.

Even delivering vaccines can be complicated. Vaccines made with mRNA technology must be stored at very cold temperatures, which may be especially difficult in developing countries. DNA vaccines don’t need cold storage, but they require new methods of delivery such as gene guns that shoot gold “bullets.” We need to be developing and testing different delivery methods now.

Related posts

Tips from UPS: beat supply chain delays to win the holidays

scceu

Flexsteel Industries Deals With Supply Chain Disruptions — Commodity Comment

scceu

Supply chain ‘must be fixed urgently’ to ensure food security in the UK | Supply chain crisis

scceu