Supply Chain Council of European Union | Scceu.org
Procurement

Contextual spatial modelling in the horizontal and vertical domains

  • Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818. https://doi.org/10.1126/science.1185383 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S., Thornt, P. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed Stocker, T. F. et al.) 465–470 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • Bouma, J. Soil science contributions towards Sustainable Development Goals and their implementation: Linking soil functions with ecosystem services. J. Plant Nutr. Soil Sci. 177, 111–120. https://doi.org/10.1002/jpln.201300646 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Jenny, H. Factors f Soil Formation. A System of Quantitative Pedology (McGraw-Hill Book Company, New York, 1941).


    Google Scholar
     

  • Matheron, G. Principles of geostatistics. Econ. Geol. 58, 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246 (1963).

    CAS 
    Article 

    Google Scholar
     

  • Dokuchaev, V. V. The Russian Chernozem (St. Petersburg, 1883).

  • McBratney, A., Mendonça Santos, M. & Minasny, B. On digital soil mapping. Geoderma 117, 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Behrens, T. et al. Hyper-scale digital soil mapping and soil formation analysis. Geoderma 213, 578–588. https://doi.org/10.1016/j.geoderma.2013.07.031 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Krige, D. G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52, 119–139 (1951).


    Google Scholar
     

  • Burgess, T. M. & Webster, R. Optimal interpolation and isarithmic mapping of soil properties. J. Soil Sci. 31, 333–341. https://doi.org/10.1111/j.1365-2389.1980.tb02085.x (1980).

    Article 

    Google Scholar
     

  • Aitkenhead, M. J. & Aalders, I. H. Predicting land cover using GIS, Bayesian and evolutionary algorithm methods. J. Environ. Manag. 90, 236–250. https://doi.org/10.1016/j.jenvman.2007.09.010 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data 2nd edn. (CRC Press, Boca Raton, 2015).

    MATH 

    Google Scholar
     

  • Behrens, T., MacMillan, R. A., Viscarra Rossel, R. A., Schmidt, K. & Lee, J. Teleconnections in spatial modelling. Geoderma 354, 113854. https://doi.org/10.1016/j.geoderma.2019.07.012 (2019).

    ADS 
    Article 

    Google Scholar
     

  • MacMillan, R., Jones, R. & McNabb, D. H. Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs). Comput. Environ. Urban Syst. 28, 175–200. https://doi.org/10.1016/S0198-9715(03)00019-X (2004).

    Article 

    Google Scholar
     

  • Behrens, T., Zhu, A.-X., Schmidt, K. & Scholten, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155, 175–185. https://doi.org/10.1016/j.geoderma.2009.07.010 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Behrens, T., Schmidt, K., Zhu, A. X. & Scholten, T. The ConMap approach for terrain-based digital soil mapping. Eur. J. Soil Sci. 61, 133–143. https://doi.org/10.1111/j.1365-2389.2009.01205.x (2010).

    Article 

    Google Scholar
     

  • Behrens, T., Schmidt, K., MacMillan, R. A. & Viscarra Rossel, R. A. Multiscale contextual spatial modelling with the Gaussian scale space. Geoderma 310, 128–137. https://doi.org/10.1016/j.geoderma.2017.09.015 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Behrens, T., Schmidt, K., MacMillan, R. A. & Viscarra Rossel, R. A. Multi-scale digital soil mapping with deep learning. Sci. Rep. 8, 15244. https://doi.org/10.1038/s41598-018-33516-6 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rentschler, T. et al. Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE 14, e0220881. https://doi.org/10.1371/journal.pone.0220881 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behrens, T. et al. The relevant range of scales for multi-scale contextual spatial modelling. Sci. Rep. 9, 14800. https://doi.org/10.1038/s41598-019-51395-3 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204. https://doi.org/10.1038/s41586-019-0912-1 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kerry, R. & Oliver, M. A. Soil geomorphology: Identifying relations between the scale of spatial variation and soil processes using the variogram. Geomorphology 130, 40–54. https://doi.org/10.1016/j.geomorph.2010.10.002 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article 

    Google Scholar
     

  • Taghizadeh-Mehrjardi, R. et al. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sens. 12, 1095. https://doi.org/10.3390/rs12071095 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Murphy, B. W., Wilson, B. R. & Koen, T. Mathematical functions to model the depth distribution of soil organic carbon in a range of soils from New South Wales, Australia under different land uses. Soil Syst. 3, 46. https://doi.org/10.3390/soilsystems3030046 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Aldana Jague, E. et al. High resolution characterization of the soil organic carbon depth profile in a soil landscape affected by erosion. Soil Tillage Res. 156, 185–193. https://doi.org/10.1016/j.still.2015.05.014 (2016).

    Article 

    Google Scholar
     

  • Milne, G. Normal erosion as a factor in soil profile development. Nature 138, 548–549. https://doi.org/10.1038/138548c0 (1936).

    ADS 
    Article 

    Google Scholar
     

  • Rentschler, T. et al. 3D mapping of soil organic carbon content and soil moisture with multiple geophysical sensors and machine learning. Vadose Zone J. https://doi.org/10.1002/vzj2.20062 (2020).

    Article 

    Google Scholar
     

  • Moghadas, D., Taghizadeh-Mehrjardi, R. & Triantafilis, J. Probabilistic inversion of EM38 data for 3D soil mapping in central Iran. Geoderma Reg. 7, 230–238. https://doi.org/10.1016/j.geodrs.2016.04.006 (2016).

    Article 

    Google Scholar
     

  • Civis, J. et al. Cuenza del guadalquvir. In Geológica de España (ed. Vera, J. A.) 543–550 (Igme, Maerid, 2004).


    Google Scholar
     

  • Wolf, D. & Faust, D. Western Mediterranean environmental changes: Evidences from fluvial archives. Quat. Sci. Rev. 122, 30–50. https://doi.org/10.1016/j.quascirev.2015.04.016 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Aguirre, J. et al. An enigmatic kilometer-scale concentration of small mytilids (Late Miocene, Guadalquivir Basin, S Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 436, 199–213. https://doi.org/10.1016/j.palaeo.2015.07.015 (2015).

    Article 

    Google Scholar
     

  • Gómez-Miguel, V. Mapa de Suelos de España (Centro Nacional de Información Geográfica (CNIG), Madrid, 2005).


    Google Scholar
     

  • QGIS Development Team. QGIS Geographic Information System (QGIS Association, 2020).

  • Jasiewicz, J. & Stepinski, T. F. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147–156. https://doi.org/10.1016/j.geomorph.2012.11.005 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Viscarra Rossel, R. A., Walvoort, D., McBratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Stevens, A. & Ramirez-Lopez, L. An introduction to the prospectr package (2014).

  • Khaledian, Y. et al. Modeling soil cation exchange capacity in multiple countries. CATENA 158, 194–200. https://doi.org/10.1016/j.catena.2017.07.002 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Tóth, B. et al. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 66, 226–238. https://doi.org/10.1111/ejss.12192 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hazelton, P. & Murphy, B. Interpreting Soil Test Results. What do all the Numbers Mean? (CSIRO Publishing, Clayton South, 2007).

    Book 

    Google Scholar
     

  • Pulido, M., Schnabel, S., Contador, J. F. L., Lozano-Parra, J. & Gómez-Gutiérrez, Á. Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecol. Indic. 74, 49–61. https://doi.org/10.1016/j.ecolind.2016.11.016 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691. https://doi.org/10.1016/j.cageo.2004.03.012 (2004).

    ADS 
    Article 

    Google Scholar
     

  • Burt, P. J. & Adelson, E. H. The Laplacian pyramid as a compact image Code. IEEE Trans. Commun. 31, 532–540. https://doi.org/10.1109/TCOM.1983.1095851 (1983).

    Article 

    Google Scholar
     

  • Zevenbergen, L. W. & Thorne, C. R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 12, 47–56. https://doi.org/10.1002/esp.3290120107 (1987).

    ADS 
    Article 

    Google Scholar
     

  • Grimm, R., Behrens, T., Märker, M. & Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma 146, 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Chapman and Hall, 1984).

    MATH 

    Google Scholar
     

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 
    MATH 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (Vienna, Austria, 2021).

  • RStudio Team. RStudio: Integrated Development Environment for R. Available at http://www.rstudio.com/ (Boston, MA, 2021).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).


    Google Scholar
     

  • Schmidt, K., Behrens, T. & Scholten, T. Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma 146, 138–146. https://doi.org/10.1016/j.geoderma.2008.05.010 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26. https://doi.org/10.18637/jss.v028.i05 (2008).

    Article 

    Google Scholar
     

  • Behrens, T. & Viscarra Rossel, R. A. On the interpretability of predictors in spatial data science: The information horizon. Sci. Rep. 10, 16737. https://doi.org/10.1038/s41598-020-73773-y (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caro Gómez, J. A., Del Díaz Olmo, F., Artigas, R. C., Recio Espejo, J. M. & Barrera, C. B. Geoarchaeological alluvial terrace system in Tarazona: Chronostratigraphical transition of Mode 2 to Mode 3 during the middle-upper pleistocene in the Guadalquivir River valley (Seville, Spain). Quat. Int. 243, 143–160. https://doi.org/10.1016/j.quaint.2011.04.022 (2011).

    Article 

    Google Scholar
     

  • Schaller, M. et al. Spatial and temporal variations in denudation rates derived from cosmogenic nuclides in four European fluvial terrace sequences. Geomorphology 274, 180–192. https://doi.org/10.1016/j.geomorph.2016.08.018 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Finné, M., Holmgren, K., Sundqvist, H. S., Weiberg, E. & Lindblom, M. Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years—A review. J. Archaeol. Sci. 38, 3153–3173. https://doi.org/10.1016/j.jas.2011.05.007 (2011).

    Article 

    Google Scholar
     

  • Vogel, H.-J. et al. Quantitative evaluation of soil functions: Potential and state. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00164 (2019).

    Article 

    Google Scholar
     

  • Amundson, R. Factors of soil formation in the 21st century. Geoderma 391, 114960. https://doi.org/10.1016/j.geoderma.2021.114960 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Diacono, M. & Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 30, 401–422. https://doi.org/10.1051/agro/2009040 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Amundson, R., Heimsath, A., Owen, J., Yoo, K. & Dietrich, W. E. Hillslope soils and vegetation. Geomorphology 234, 122–132. https://doi.org/10.1016/j.geomorph.2014.12.031 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Pike, R. J. The geometric signature: Quantifying landslide-terrain types from digital elevation models. Math. Geol. 20, 491–511. https://doi.org/10.1007/BF00890333 (1988).

    Article 

    Google Scholar
     

  • Lark, R. M. & Webster, R. Analysing soil variation in two dimensions with the discrete wavelet transform. Eur. J. Soil Sci. 55, 777–797. https://doi.org/10.1111/j.1365-2389.2004.00630.x (2004).

    Article 

    Google Scholar
     

  • Schmidt, K., Behrens, T., Friedrich, K. & Scholten, T. A method to generate soilscapes from soil maps. J. Plant Nutr. Soil Sci. 173, 163–172. https://doi.org/10.1002/jpln.200800208 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Scholten, T. et al. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. J. Plant Ecol. 10, 111–127. https://doi.org/10.1093/jpe/rtw065 (2017).

    Article 

    Google Scholar
     

  • Mar Delgado-Serrano, M. & Ángel Hurtado-Martos, J. Land use changes in Spain. Drivers and trends in agricultural land use. EU Agrar. Law 7, 1–8. https://doi.org/10.2478/eual-2018-0006 (2018).

    Article 

    Google Scholar
     

  • Kühn, P., Lehndorff, E. & Fuchs, M. Lateglacial to Holocene pedogenesis and formation of colluvial deposits in a loess landscape of Central Europe (Wetterau, Germany). CATENA 154, 118–135. https://doi.org/10.1016/j.catena.2017.02.015 (2017).

    Article 

    Google Scholar
     

  • Scherer, S. et al. Middle Bronze Age land use practices in the northwestern Alpine foreland—a multi-proxy study of colluvial deposits, archaeological features and peat bogs. Soil 7, 269–304. https://doi.org/10.5194/soil-7-269-2021 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pickett, S. T. A. Space-for-time substitution as an alternative to long-term studies. In Long-Term Studies in Ecology (ed. Likens, G. E.) 110–135 (Springer, New York, 1989). https://doi.org/10.1007/978-1-4615-7358-6_5.

    Chapter 

    Google Scholar
     

  • Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. 110, 9374–9379. https://doi.org/10.1073/pnas.1220228110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related posts

    Production, procurement of PPE kits started to meet demands, says Health Ministry

    scceu

    Dawson County’s emergency management planning committee hasn’t met since 2009, now the group needs participants | Latest Headlines

    scceu

    Morocco’s MDJS launches tender for new lottery and sports supplier – Lottery procurement

    scceu