Supply Chain Council of European Union | Scceu.org
Supply Chain Risk

Using large ensembles of climate change mitigation scenarios for robust insights

  • Bauer, N. et al. Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change 163, 1553–1568 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article 

    Google Scholar
     

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Roelfsema, M. et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 11, 2096 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Schaeffer, R. et al. Comparing transformation pathways across major economies. Climatic Change 162, 1787–1803 (2020).

    Article 

    Google Scholar
     

  • Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change 8, 1027–1030 (2018).

    Article 

    Google Scholar
     

  • Auer, C. et al. Climate change scenario services: from science to facilitating action. One Earth 4, 1074–1082 (2021).

    Article 

    Google Scholar
     

  • Weber, C. et al. Mitigation scenarios must cater to new users. Nat. Clim. Change 8, 845–848 (2018).

    Article 

    Google Scholar
     

  • Krabbe, O. et al. Aligning corporate greenhouse-gas emissions targets with climate goals. Nat. Clim. Change 5, 1057–1060 (2015).

    Article 

    Google Scholar
     

  • NGFS Climate Scenarios for Central Banks and Supervisors (Network for Greening the Financial System, 2021); https://www.ngfs.net/sites/default/files/media/2021/08/27/ngfs_climate_scenarios_phase2_june2021.pdf

  • Final Report: Recommendations of the Task Force on Climate-Related Financial Disclosures (TCFD, 2017).

  • Cointe, B., Cassen, C. & Nadaï, A. Organising policy-relevant knowledge for climate action. Sci. Technol. Stud. 32, 36–57 (2019).

    Article 

    Google Scholar
     

  • Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Skea, J., van Diemen, R., Portugal-Pereira, J. & Khourdajie, A. A. Outlooks, explorations and normative scenarios: approaches to global energy futures compared. Technol. Forecast. Soc. Change 168, 120736 (2021).

    Article 

    Google Scholar
     

  • IPCC Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (eds Nakićenović, N. et al.) (IPCC, 2000).

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar
     

  • Clarke, L. & Weyant, J. Introduction to the EMF 22 special issue on climate change control scenarios. Energy Econ. 31, S63 (2009).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Weyant, J. P. The cost of the Kyoto Protocol: a multi-model evaluation. Energy J. Special Issue 20, 1–398 (1999).


    Google Scholar
     

  • van Beek, L., Hajer, M., Pelzer, P., van Vuuren, D. & Cassen, C. Anticipating futures through models: the rise of integrated assessment modelling in the climate science–policy interface since 1970. Glob. Environ. Change 65, 102191 (2020).

    Article 

    Google Scholar
     

  • Marchau, V. A. W. J., Walker, W. E., Bloemen, P. J. T. M. & Popper, S. W. Decision Making Under Deep Uncertainty: From Theory to Practice (Springer, 2019); https://doi.org/10.1007/978-3-030-05252-2

  • Lempert, R. J., Popper, S. W. & Bankes, S. C. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis (RAND Corporation, 2003); https://www.rand.org/pubs/monograph_reports/MR1626.html

  • Guivarch, C., Rozenberg, J. & Schweizer, V. The diversity of socio-economic pathways and CO2 emissions scenarios: insights from the investigation of a scenarios database. Environ. Model. Softw. 80, 336–353 (2016).

    Article 

    Google Scholar
     

  • Lamontagne, J. R. et al. Large ensemble analytic framework for consequence‐driven discovery of climate change scenarios. Earths Future 6, 488–504 (2018).

    Article 

    Google Scholar
     

  • Giannousakis, A. et al. How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways. Energy 216, 119253 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Moksnes, N. et al. Determinants of energy futures—a scenario discovery method applied to cost and carbon emission futures for South American electricity infrastructure. Environ. Res. Commun. 1, 025001 (2019).

    Article 

    Google Scholar
     

  • Cash, D. W. et al. Knowledge systems for sustainable development. Proc. Natl Acad. Sci. USA 100, 8086–8091 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Bilogub, M. & Auer, C. Guidelines for Co-Production Workshops with Stakeholders from Policy, Business, and Finance with a Global Perspective (SENSES, 2019); https://climatescenarios.org/share/SENSES_CoproductionManual_Global.pdf

  • Jaxa-Rozen, M. & Trutnevyte, E. Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nat. Clim. Change 11, 266–273 (2021).

    Article 

    Google Scholar
     

  • Lamboll, R. D., Nicholls, Z. R. J., Kikstra, J. S., Meinshausen, M. & Rogelj, J. Silicone v1.0.0: an open-source Python package for inferring missing emissions data for climate change research. Geosci. Model Dev. 13, 5259–5275 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Forster, P. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • Huppmann, D. et al. pyam: analysis and visualisation of integrated assessment and macro-energy scenarios. Open Res. Eur. 1, 74 (2021).

    Article 

    Google Scholar
     

  • Brutschin, E. et al. A multidimensional feasibility evaluation of low-carbon scenarios. Environ. Res. Lett. 16, 064069 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Warszawski, L. et al. All options, not silver bullets, needed to limit global warming to 1.5 °C: a scenario appraisal. Environ. Res. Lett. 16, 064037 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tavoni, M. & Tol, R. S. J. Counting only the hits? The risk of underestimating the costs of stringent climate policy: a letter. Climatic Change 100, 769–778 (2010).

    Article 

    Google Scholar
     

  • van Sluisveld, M. A. E. et al. Comparing future patterns of energy system change in 2 °C scenarios to expert projections. Glob. Environ. Change 50, 201–211 (2018).

    Article 

    Google Scholar
     

  • Christensen, P., Gillingham, K. & Nordhaus, W. Uncertainty in forecasts of long-run economic growth. Proc. Natl Acad. Sci. USA 115, 5409–5414 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Castles, I. & Henderson, D. The IPCC emission scenarios: an economic–statistical critique. Energy Environ. 14, 159–185 (2003).

    Article 

    Google Scholar
     

  • van Ruijven, B. J. Mind the gap—the case for medium level emission scenarios. Climatic Change 138, 361–367 (2016).

    Article 

    Google Scholar
     

  • Trutnevyte, E. et al. Societal transformations in models for energy and climate policy: the ambitious next step. One Earth 1, 423–433 (2019).

    Article 

    Google Scholar
     

  • Millner, A. & McDermott, T. K. J. Model confirmation in climate economics. Proc. Natl Acad. Sci. USA 113, 8675–8680 (2016).

    CAS 
    Article 

    Google Scholar
     

  • van der Wijst, K.-I., Hof, A. F. & van Vuuren, D. P. On the optimality of 2 °C targets and a decomposition of uncertainty. Nat. Commun. 12, 2575 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    Article 

    Google Scholar
     

  • Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075 (2007).

    Article 

    Google Scholar
     

  • Brunner, L. et al. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 11, 995–1012 (2020).

    Article 

    Google Scholar
     

  • Harmsen, M. et al. Integrated assessment model diagnostics: key indicators and model evolution. Environ. Res. Lett. 16, 054046 (2021).

    Article 

    Google Scholar
     

  • Xexakis, G. & Trutnevyte, E. Are interactive web-tools for environmental scenario visualization worth the effort? An experimental study on the Swiss electricity supply scenarios 2035. Environ. Model. Softw. 119, 124–134 (2019).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  • Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  • Groves, D. G. & Lempert, R. J. A new analytic method for finding policy-relevant scenarios. Glob. Environ. Change 17, 73–85 (2007).

    Article 

    Google Scholar
     

  • Friedman, J. H. & Fisher, N. I. Bump hunting in high-dimensional data. Stat. Comput. 9, 123–143 (1999).

    Article 

    Google Scholar
     

  • Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (Taylor & Francis, 1984).

  • Elsawah, S. et al. Scenario processes for socio-environmental systems analysis of futures: a review of recent efforts and a salient research agenda for supporting decision making. Sci. Total Environ. 729, 138393 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Schweizer, V. J. Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research. Climatic Change 162, 1705–1722 (2020).

    Article 

    Google Scholar
     

  • Weimer-Jehle, W. Cross-impact balances: a system-theoretical approach to cross-impact analysis. Technol. Forecast. Soc. Change 73, 334–361 (2006).

    Article 

    Google Scholar
     

  • Schweizer, V. J. & Kriegler, E. Improving environmental change research with systematic techniques for qualitative scenarios. Environ. Res. Lett. 7, 044011 (2012).

    Article 

    Google Scholar
     

  • Alcamo, J. & Ribeiro, T. Scenarios as Tools for International Environmental Assessments (European Environment Agency, 2001).

  • Auping, W. L., Pruyt, E., de Jong, S. & Kwakkel, J. H. The geopolitical impact of the shale revolution: exploring consequences on energy prices and rentier states. Energy Policy 98, 390–399 (2016).

    Article 

    Google Scholar
     

  • Tietje, O. Identification of a small reliable and efficient set of consistent scenarios. Eur. J. Oper. Res. 162, 418–432 (2005).

    Article 

    Google Scholar
     

  • Berntsen, P. B. & Trutnevyte, E. Ensuring diversity of national energy scenarios: bottom-up energy system model with modeling to generate alternatives. Energy 126, 886–898 (2017).

    Article 

    Google Scholar
     

  • Steinmann, P., Auping, W. L. & Kwakkel, J. H. Behavior-based scenario discovery using time series clustering. Technol. Forecast. Soc. Change 156, 120052 (2020).

    Article 

    Google Scholar
     

  • Gerst, M. D., Wang, P. & Borsuk, M. E. Discovering plausible energy and economic futures under global change using multidimensional scenario discovery. Environ. Model. Softw. 44, 76–86 (2013).

    Article 

    Google Scholar
     

  • Li, P.-H., Pye, S. & Keppo, I. Using clustering algorithms to characterise uncertain long-term decarbonisation pathways. Appl. Energy 268, 114947 (2020).

    Article 

    Google Scholar
     

  • Alcamo, J. Environmental Futures: The Practice of Environmental Scenario Analysis (Elsevier, 2008).

  • Kemp-Benedict, E. Telling better stories: strengthening the story in story and simulation. Environ. Res. Lett. 7, 041004 (2012).

    Article 

    Google Scholar
     

  • Carlsen, H., Eriksson, E. A., Dreborg, K. H., Johansson, B. & Bodin, Ö. Systematic exploration of scenario spaces. Foresight 18, 59–75 (2016).

    Article 

    Google Scholar
     

  • Morgan, M. G. & Keith, D. W. Improving the way we think about projecting future energy use and emissions of carbon dioxide. Climatic Change 90, 189–215 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Saltelli, A. et al. Global Sensitivity Analysis. The Primer (Wiley, 2007).

  • Guivarch, C. & Monjon, S. Identifying the main uncertainty drivers of energy security in a low-carbon world: the case of Europe. Energy Econ. 64, 530–541 (2017).

    Article 

    Google Scholar
     

  • Fisch-Romito, V. & Guivarch, C. Transportation infrastructures in a low carbon world: an evaluation of investment needs and their determinants. Transp. Res. D 72, 203–219 (2019).

    Article 

    Google Scholar
     

  • Pye, S. et al. Assessing qualitative and quantitative dimensions of uncertainty in energy modelling for policy support in the United Kingdom. Energy Res. Soc. Sci. 46, 332–344 (2018).

    Article 

    Google Scholar
     

  • Kriegler, E. et al. Will economic growth and fossil fuel scarcity help or hinder climate stabilization? Overview of the RoSE multi-model study. Climatic Change 136, 7–22 (2016).

    Article 

    Google Scholar
     

  • Marangoni, G. et al. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways. Nat. Clim. Change 7, 113–117 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Alexander, P. et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 23, 767–781 (2017).

    Article 

    Google Scholar
     

  • van Vuuren, D. et al. The costs of achieving climate targets and the sources of uncertainty. Nat. Clim. Change 10, 329–334 (2020).

    Article 

    Google Scholar
     

  • Meyer, M., Löschel, A. & Lutz, C. Carbon price dynamics in ambitious climate mitigation scenarios: an analysis based on the IAMC 1.5 °C scenario explorer. Environ. Res. Commun. 3, 081007 (2021).

    Article 

    Google Scholar
     

  • Diniz Oliveira, T. et al. A mixed‐effect model approach for assessing land‐based mitigation in integrated assessment models: a regional perspective. Glob. Change Biol. 27, 4671–4685 (2021).

    Article 

    Google Scholar
     

  • Zhou, T., Lu, J., Zhang, W. & Chen, Z. The sources of uncertainty in the projection of global land monsoon precipitation. Geophys. Res. Lett. 47, e88415 (2020).

  • Ombadi, M., Nguyen, P., Sorooshian, S. & Hsu, K. Retrospective analysis and Bayesian model averaging of CMIP6 precipitation in the Nile River Basin. J. Hydrometeorol. 22, 217–229 (2021).

    Article 

    Google Scholar
     

  • Grübler, A. & Nakicenovic, N. Identifying dangers in an uncertain climate. Nature 412, 15 (2001).

    Article 

    Google Scholar
     

  • Schneider, S. H. What is ‘dangerous’ climate change? Nature 411, 17–19 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Ho, E., Budescu, D. V., Bosetti, V., van Vuuren, D. P. & Keller, K. Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment. Climatic Change 155, 545–561 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kaack, L. H., Apt, J., Morgan, M. G. & McSharry, P. Empirical prediction intervals improve energy forecasting. Proc. Natl Acad. Sci. USA 114, 8752–8757 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Manski, C. F., Sanstad, A. H. & DeCanio, S. J. Addressing partial identification in climate modeling and policy analysis. Proc. Natl Acad. Sci. USA 118, e2022886118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Trutnevyte, E., Guivarch, C., Lempert, R. & Strachan, N. Reinvigorating the scenario technique to expand uncertainty consideration. Climatic Change 135, 373–379 (2016).

    Article 

    Google Scholar
     

  • Moss, R. H. Assessing decision support systems and levels of confidence to narrow the climate information ‘usability gap’. Climatic Change 135, 143–155 (2016).

    Article 

    Google Scholar
     

  • Lemos, M. C., Kirchhoff, C. J. & Ramprasad, V. Narrowing the climate information usability gap. Nat. Clim. Change 2, 789–794 (2012).

    Article 

    Google Scholar
     

  • Spiegelhalter, D., Pearson, M. & Short, I. Visualizing uncertainty about the future. Science 333, 1393–1400 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Strecher, V. J., Greenwood, T., Wang, C. & Dumont, D. Interactive multimedia and risk communication. JNCI Monogr. 1999, 134–139 (1999).

    Article 

    Google Scholar
     

  • Huppmann, D. et al. IAMC 1.5°C scenario explorer and data hosted by IIASA. Zenodo https://doi.org/10.5281/ZENODO.3363345 (2019).

  • McCollum, D. L. et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).

    Article 

    Google Scholar
     

  • Parker, A. M., Srinivasan, S. V., Lempert, R. J. & Berry, S. H. Evaluating simulation-derived scenarios for effective decision support. Technol. Forecast. Soc. Change 91, 64–77 (2015).

    Article 

    Google Scholar
     

  • Xexakis, G. & Trutnevyte, E. Empirical testing of the visualizations of climate change mitigation scenarios with citizens: a comparison among Germany, Poland, and France. Glob. Environ. Change 70, 102324 (2021).

    Article 

    Google Scholar
     

  • Gong, M. et al. Testing the scenario hypothesis: an experimental comparison of scenarios and forecasts for decision support in a complex decision environment. Environ. Model. Softw. 91, 135–155 (2017).

  • McMahon, R., Stauffacher, M. & Knutti, R. The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph. Climatic Change 133, 141–154 (2015).

    Article 

    Google Scholar
     

  • Bryant, B. P. Scenario Discovery Tools to Support Robust Decision Making, Documentation of the ‘sdtoolkit’ Package for R (RAND Corporation, 2015); https://cran.r-project.org/web/packages/sdtoolkit/sdtoolkit.pdf

  • Hadka, D., Herman, J., Reed, P. & Keller, K. An open source framework for many-objective robust decision making. Environ. Model. Softw. 74, 114–129 (2015).

    Article 

    Google Scholar
     

  • Kwakkel, J. H. The exploratory modeling workbench: an open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision making. Environ. Model. Softw. 96, 239–250 (2017).

    Article 

    Google Scholar
     

  • Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 

    Google Scholar
     

  • Branger, F., Giraudet, L.-G., Guivarch, C. & Quirion, P. Global sensitivity analysis of an energy–economy model of the residential building sector. Environ. Model. Softw. 70, 45–54 (2015).

    Article 

    Google Scholar
     

  • New, M. & Hulme, M. Representing uncertainty in climate change scenarios: a Monte-Carlo approach. Integr. Assess. 1, 203–213 (2000).

    Article 

    Google Scholar
     

  • McJeon, H. C. et al. Technology interactions among low-carbon energy technologies: what can we learn from a large number of scenarios? Energy Econ. 33, 619–631 (2011).

    Article 

    Google Scholar
     

  • Related posts

    Markets live, Thursday May 5, 2022

    scceu

    What Hong Kong Losing Its ‘Special Status’ Would Mean

    scceu

    Opinion: The profitability challenge and trucking

    scceu