Cao, X. J. et al. Design and synthesis of sillenite-based micro/nanomaterials and their applications in photocatalysis. Prog. Chem. 32, 262–273 (2020).
Tang, R. & Li, P. Synthesis and application of hierarchically structured nano-alumina. Prog. Chem. 24, 284–293 (2012).
Sari, D. P. et al. Micro/nano surface topography and 3D bioprinting of biomaterials in tissue engineering. J. Nanosci. Nanotechnol. 16, 8909–8922 (2016).
Auchter, E. et al. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems. Nanotechnology 29, 215712 (2018).
Ariga, K. et al. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 20, 51–95 (2019).
Ariga, K. Progress in molecular nanoarchitectonics and materials nanoarchitectonics. Molecules 26, 1621 (2021).
Wei, Y. S., Zou, L. L., Wang, H. F., Wang, Y. & Xu, Q. Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications. Adv. Energy Mater. 7, 2003970 (2021).
Ariga, K., Mori, T., Kitao, T. & Uemura, T. Supramolecular chiral nanoarchitectonics. Adv. Mater. 32, 1905657 (2020).
Nasrollahzadeh, M., Sajjadi, M., Iravani, S. & Varma, R. S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 251, 116986 (2021).
de Zarate, D. O. et al. Green and sustainable manufacture of ultrapure engineered nanomaterials. Nanomaterials 10, 466 (2020).
Liu, X. Y., Wang, K. X. & Chen, J. S. Template-directed metal oxides for electrochemical energy storage. Energy Storage Mater. 3, 1–17 (2016).
Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).
Liu, Y., Goebl, J. & Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013).
Bian, S. J., Wu, H. Q., Jiang, X. H., Long, Y. F. & Chen, Y. Syntheses and applications of hybrid mesoporous silica membranes. Prog. Chem. 26, 1352–1360 (2014).
Li, S. Y. et al. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 48, 885–907 (2019).
Barahona, F., Turiel, E., Cormack, P. A. G. & Martin-Esteban, A. Chromatographic performance of molecularly imprinted polymers: Core-shell microspheres by precipitation polymerization and grafted MIP films via Iniferter-modified silica beads. J. Polym. Sci. A Polym. Chem. 48, 1058–1066 (2010).
Du, K. F., Cui, X. D. & Tang, B. Template-directed synthesis of hollow silica beads by an interfacial sol-gel route. Chem. Eng. Sci. 98, 212–217 (2013).
Gaulding, E. A. et al. Fabrication and optical characterization of polystyrene opal templates for the synthesis of scalable, nanoporous (photo)electrocatalytic materials by electrodeposition. J. Mater. Chem. A 5, 11601–11614 (2017).
Li, J. J. et al. Synthesis and photocatalysis of mesoporous titania templated by natural rubber latex. RSC Adv. 5, 21480–21486 (2015).
Dong, R. H., Liu, W. M. & Hao, J. C. Soft vesicles in the synthesis of hard materials. Acc. Chem. Res. 45, 504–513 (2012).
Poolakkandy, R. R. & Menamparambath, M. M. Soft-template-assisted synthesis: A promising approach for the fabrication of transition metal oxides. Nanoscale Adv. 2, 5015–5045 (2020).
Zhao, T. C., Elzatahry, A., Li, X. M. & Zhao, D. Y. Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 4, 775–791 (2019).
Martín, J., Maiz, J., Sacristan, J. & Mijangos, C. Tailored polymer-based nanorods and nanotubes by “template synthesis”: From preparation to applications. Polymer 53, 1149–1166 (2012).
Ling, S. et al. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018).
Ling, S., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016–18019 (2018).
Shaghaleh, H., Xu, X. & Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 8, 825–842 (2018).
Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).
Dutta, S., Bhaumik, A. & Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014).
George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J. & Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 154, 329–338 (2020).
Nitta, S. K. & Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14, 1629–1654 (2013).
Xu, W. Y., Wang, X. J., Sandler, N., Willfor, S. & Xu, C. L. Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663–5680 (2018).
Pistol, C. & Dwyer, C. Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology 18, 125301–125304 (2007).
Cooper, K. Scalable nanomanufacturing—A review. Micromachines 8, 21–28 (2017).
Shukla, R. & Cheryan, M. Zein: The industrial protein from corn. Ind. Crops Prod. 13, 171–192 (2001).
Brahatheeswaran, D. et al. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed. Mater. 7, 045001 (2012).
Wang, Y. & Padua, G. W. Nanoscale characterization of zein self-assembly. Langmuir 28, 2429–2435 (2012).
Deng, L. L., Li, Y., Feng, F. Q. & Zhang, H. Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose. Food Hydrocoll. 87, 1–10 (2019).
Lawton, J. W. Zein: A history of processing and use. Cereal Chem. 79, 1–18 (2002).
Dong, J., Sun, Q. S. & Wang, J. Y. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials 25, 4691–4697 (2004).
Corradini, E. et al. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci. 15, 22438–22470 (2014).
Hoffman, K. L., Han, I. Y. & Dawson, P. L. Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J. Food Prot. 64, 885–889 (2001).
Luo, Y. C. & Wang, Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review. J. Appl. Polym. Sci. 131, 40696 (2014).
Zhang, Y. et al. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. J. Control. Release 206, 206–219 (2015).
Luecha, J., Hsiao, A., Brodsky, S., Liu, L. & Kokini, J. Green microfluidic devices made of corn proteins. Lab Chip 11, 3419–3524 (2011).
Serna, C. P. & Filho, J. F. L. Biodegradable zein-based blend films: structural, mechanical and barrier properties. Food Technol. Biotechnol. 53, 348–353 (2015).
Maharjan, B., Joshi, M. K., Tiwari, A. P., Park, C. H. & Kim, C. S. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. J. Mech. Behav. Biomed. Mater. 65, 66–76 (2017).
Subramanian, S. & Sampath, S. Adsorption of zein on surfaces with controlled wettability and thermal stability of adsorbed zein films. Biomacromol 8, 2120–2128 (2007).
Zhan, F., Yan, X., Sheng, F. & Li, B. Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chem. 330, 127172 (2020).
Torres-Giner, S., Gimenez, E. & Lagaron, J. M. Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocoll. 22, 601–614 (2008).
Oh, Y. & Flanagan, D. Swelling and permeability characteristics of zein membranes. PDA J. Pharm. Sci. Technol. 57, 208–217 (2003).

