Supply Chain Council of European Union | Scceu.org
Procurement

Making nanostructured materials from maize, milk and malacostraca

  • 1.

    Cao, X. J. et al. Design and synthesis of sillenite-based micro/nanomaterials and their applications in photocatalysis. Prog. Chem. 32, 262–273 (2020).


    Google Scholar
     

  • 2.

    Tang, R. & Li, P. Synthesis and application of hierarchically structured nano-alumina. Prog. Chem. 24, 284–293 (2012).

    CAS 

    Google Scholar
     

  • 3.

    Sari, D. P. et al. Micro/nano surface topography and 3D bioprinting of biomaterials in tissue engineering. J. Nanosci. Nanotechnol. 16, 8909–8922 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Auchter, E. et al. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems. Nanotechnology 29, 215712 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 5.

    Ariga, K. et al. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 20, 51–95 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Ariga, K. Progress in molecular nanoarchitectonics and materials nanoarchitectonics. Molecules 26, 1621 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Wei, Y. S., Zou, L. L., Wang, H. F., Wang, Y. & Xu, Q. Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications. Adv. Energy Mater. 7, 2003970 (2021).


    Google Scholar
     

  • 8.

    Ariga, K., Mori, T., Kitao, T. & Uemura, T. Supramolecular chiral nanoarchitectonics. Adv. Mater. 32, 1905657 (2020).

    CAS 

    Google Scholar
     

  • 9.

    Nasrollahzadeh, M., Sajjadi, M., Iravani, S. & Varma, R. S. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: A review. Carbohydr. Polym. 251, 116986 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    de Zarate, D. O. et al. Green and sustainable manufacture of ultrapure engineered nanomaterials. Nanomaterials 10, 466 (2020).


    Google Scholar
     

  • 11.

    Liu, X. Y., Wang, K. X. & Chen, J. S. Template-directed metal oxides for electrochemical energy storage. Energy Storage Mater. 3, 1–17 (2016).


    Google Scholar
     

  • 12.

    Yang, Y. et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017).


    Google Scholar
     

  • 13.

    Liu, Y., Goebl, J. & Yin, Y. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Bian, S. J., Wu, H. Q., Jiang, X. H., Long, Y. F. & Chen, Y. Syntheses and applications of hybrid mesoporous silica membranes. Prog. Chem. 26, 1352–1360 (2014).

    CAS 

    Google Scholar
     

  • 15.

    Li, S. Y. et al. Strategies to control zeolite particle morphology. Chem. Soc. Rev. 48, 885–907 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Barahona, F., Turiel, E., Cormack, P. A. G. & Martin-Esteban, A. Chromatographic performance of molecularly imprinted polymers: Core-shell microspheres by precipitation polymerization and grafted MIP films via Iniferter-modified silica beads. J. Polym. Sci. A Polym. Chem. 48, 1058–1066 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Du, K. F., Cui, X. D. & Tang, B. Template-directed synthesis of hollow silica beads by an interfacial sol-gel route. Chem. Eng. Sci. 98, 212–217 (2013).

    CAS 

    Google Scholar
     

  • 18.

    Gaulding, E. A. et al. Fabrication and optical characterization of polystyrene opal templates for the synthesis of scalable, nanoporous (photo)electrocatalytic materials by electrodeposition. J. Mater. Chem. A 5, 11601–11614 (2017).

    CAS 

    Google Scholar
     

  • 19.

    Li, J. J. et al. Synthesis and photocatalysis of mesoporous titania templated by natural rubber latex. RSC Adv. 5, 21480–21486 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Dong, R. H., Liu, W. M. & Hao, J. C. Soft vesicles in the synthesis of hard materials. Acc. Chem. Res. 45, 504–513 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Poolakkandy, R. R. & Menamparambath, M. M. Soft-template-assisted synthesis: A promising approach for the fabrication of transition metal oxides. Nanoscale Adv. 2, 5015–5045 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Zhao, T. C., Elzatahry, A., Li, X. M. & Zhao, D. Y. Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 4, 775–791 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Martín, J., Maiz, J., Sacristan, J. & Mijangos, C. Tailored polymer-based nanorods and nanotubes by “template synthesis”: From preparation to applications. Polymer 53, 1149–1166 (2012).


    Google Scholar
     

  • 24.

    Ling, S. et al. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci. 85, 1–56 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Ling, S., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016–18019 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Shaghaleh, H., Xu, X. & Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 8, 825–842 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Dutta, S., Bhaumik, A. & Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014).

    CAS 

    Google Scholar
     

  • 29.

    George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J. & Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 154, 329–338 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Nitta, S. K. & Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14, 1629–1654 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Xu, W. Y., Wang, X. J., Sandler, N., Willfor, S. & Xu, C. L. Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications. ACS Sustain. Chem. Eng. 6, 5663–5680 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Pistol, C. & Dwyer, C. Scalable, low-cost, hierarchical assembly of programmable DNA nanostructures. Nanotechnology 18, 125301–125304 (2007).

    ADS 

    Google Scholar
     

  • 33.

    Cooper, K. Scalable nanomanufacturing—A review. Micromachines 8, 21–28 (2017).


    Google Scholar
     

  • 34.

    Shukla, R. & Cheryan, M. Zein: The industrial protein from corn. Ind. Crops Prod. 13, 171–192 (2001).

    CAS 

    Google Scholar
     

  • 35.

    Brahatheeswaran, D. et al. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications. Biomed. Mater. 7, 045001 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 36.

    Wang, Y. & Padua, G. W. Nanoscale characterization of zein self-assembly. Langmuir 28, 2429–2435 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Deng, L. L., Li, Y., Feng, F. Q. & Zhang, H. Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose. Food Hydrocoll. 87, 1–10 (2019).

    CAS 

    Google Scholar
     

  • 38.

    Lawton, J. W. Zein: A history of processing and use. Cereal Chem. 79, 1–18 (2002).

    CAS 

    Google Scholar
     

  • 39.

    Dong, J., Sun, Q. S. & Wang, J. Y. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials 25, 4691–4697 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Corradini, E. et al. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Int. J. Mol. Sci. 15, 22438–22470 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Hoffman, K. L., Han, I. Y. & Dawson, P. L. Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. J. Food Prot. 64, 885–889 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Luo, Y. C. & Wang, Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review. J. Appl. Polym. Sci. 131, 40696 (2014).


    Google Scholar
     

  • 43.

    Zhang, Y. et al. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. J. Control. Release 206, 206–219 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Luecha, J., Hsiao, A., Brodsky, S., Liu, L. & Kokini, J. Green microfluidic devices made of corn proteins. Lab Chip 11, 3419–3524 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Serna, C. P. & Filho, J. F. L. Biodegradable zein-based blend films: structural, mechanical and barrier properties. Food Technol. Biotechnol. 53, 348–353 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Maharjan, B., Joshi, M. K., Tiwari, A. P., Park, C. H. & Kim, C. S. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. J. Mech. Behav. Biomed. Mater. 65, 66–76 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Subramanian, S. & Sampath, S. Adsorption of zein on surfaces with controlled wettability and thermal stability of adsorbed zein films. Biomacromol 8, 2120–2128 (2007).

    CAS 

    Google Scholar
     

  • 48.

    Zhan, F., Yan, X., Sheng, F. & Li, B. Facile in situ synthesis of silver nanoparticles on tannic acid/zein electrospun membranes and their antibacterial, catalytic and antioxidant activities. Food Chem. 330, 127172 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Torres-Giner, S., Gimenez, E. & Lagaron, J. M. Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning. Food Hydrocoll. 22, 601–614 (2008).

    CAS 

    Google Scholar
     

  • 50.

    Oh, Y. & Flanagan, D. Swelling and permeability characteristics of zein membranes. PDA J. Pharm. Sci. Technol. 57, 208–217 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Related posts

    Tata NYK Shipping Hires Bunker Procurement Manager From Bunkerchain

    scceu

    Law Firm Seeks Support in Call for President Trump’s Ouster | Business News

    scceu

    Canara Bank : LIMITED TENDER PROCESS FOR PROCUREMENT OF 95 GSM MICR SECURITY PAPER FROM IBA EMPANELLED SUPPLIERS

    scceu