Supply Chain Council of European Union | Scceu.org
Procurement

Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12

  • 1.

    Sustainable Development Goals: 17 Goals to Transform our World (United Nations, 2015).

  • 2.

    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    CAS 

    Google Scholar
     

  • 3.

    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    CAS 

    Google Scholar
     

  • 4.

    Steininger, K. W., Lininger, C., Meyer, L. H., Muñoz, P. & Schinko, T. Multiple carbon accounting to support just and effective climate policies. Nat. Clim. Change 6, 35–41 (2016).


    Google Scholar
     

  • 5.

    Afionis, S., Sakai, M., Scott, K., Barrett, J. & Gouldson, A. Consumption‐based carbon accounting: does it have a future? Wiley Interdiscip. Rev. Clim. Change 8, e438 (2017).


    Google Scholar
     

  • 6.

    IAEG-SDGs—Tier Classification for Global SDG Indicators (United Nations, 2019).

  • 7.

    Tier Classification for Global SDG Indicators (United Nations, 2021).

  • 8.

    Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).


    Google Scholar
     

  • 9.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    CAS 

    Google Scholar
     

  • 10.

    Handbook on Supply, Use and Input–Output Tables with Extensions and Applications (UNSD, 2018).

  • 11.

    Giljum, S., Bruckner, M. & Martinez, A. Material footprint assessment in a global input–output framework. J. Ind. Ecol. 19, 792–804 (2015).


    Google Scholar
     

  • 12.

    Wu, R., Geng, Y. & Liu, W. Trends of natural resource footprints in the BRIC (Brazil, Russia, India and China) countries. J. Clean. Prod. 142, 775–782 (2017).


    Google Scholar
     

  • 13.

    Pothen, F. A structural decomposition of global raw material consumption. Ecol. Econ. 141, 154–165 (2017).


    Google Scholar
     

  • 14.

    Giljum, S. et al. Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. J. Econ. Struct. 5, 17 (2016).


    Google Scholar
     

  • 15.

    Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).


    Google Scholar
     

  • 16.

    Steinmann, Z. J. N. et al. Headline environmental indicators revisited with the global multi‐regional input–output database EXIOBASE. J. Ind. Ecol. 22, 565–573 (2018).


    Google Scholar
     

  • 17.

    Bjelle, E. L. et al. Adding country resolution to EXIOBASE: impacts on land use embodied in trade. J. Econ. Struct. 9, 14 (2020).


    Google Scholar
     

  • 18.

    Lutter, S., Giljum, S. & Bruckner, M. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127, 1–10 (2016).


    Google Scholar
     

  • 19.

    Eisenmenger, N. et al. Consumption-based material flow indicators—comparing six ways of calculating the Austrian raw material consumption providing six results. Ecol. Econ. 128, 177–186 (2016).


    Google Scholar
     

  • 20.

    Bringezu, S. in Managing Water, Soil and Waste Resources to Achieve Sustainable Development Goals: Monitoring and Implementation of Integrated Resources Management (eds Hülsmann, S. & Ardakanian, R.) 11–34 (Springer, 2018).

  • 21.

    Giljum, S. et al. The impacts of data deviations between MRIO models on material footprints: a comparison of EXIOBASE, Eora, and ICIO. J. Ind. Ecol. 23, 946–958 (2019).


    Google Scholar
     

  • 22.

    Teixidó-Figueras, J. et al. International inequality of environmental pressures: decomposition and comparative analysis. Ecol. Indic. 62, 163–173 (2016).


    Google Scholar
     

  • 23.

    Schaffartzik, A., Duro, J. A. & Krausmann, F. Global appropriation of resources causes high international material inequality—growth is not the solution. Ecol. Econ. 163, 9–19 (2019).


    Google Scholar
     

  • 24.

    Södersten, C.-J., Wood, R. & Wiedmann, T. The capital load of global material footprints. Resour. Conserv. Recycl. 158, 104811 (2020).


    Google Scholar
     

  • 25.

    Berrill, P., Miller, T. R., Kondo, Y. & Hertwich, E. G. Capital in the American carbon, energy, and material footprint. J. Ind. Ecol. 24, 589–600 (2020).


    Google Scholar
     

  • 26.

    Jin, Y., Wang, H., Fry, J., Wang, Y. & Lenzen, M. Material footprints of Chinese megacities. Resour. Conserv. Recycl. 174, 105758 (2021).


    Google Scholar
     

  • 27.

    Ye, Q. et al. Linking the environmental pressures of China’s capital development to global final consumption of the past decades and into the future. J. Environ. Sci. Technol. 55, 6421–6429 (2021).

    CAS 

    Google Scholar
     

  • 28.

    Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).


    Google Scholar
     

  • 29.

    Fix, B. Dematerialization through services: evaluating the evidence. BioPhys. Econ. Resour. Qual. 4, 6 (2019).


    Google Scholar
     

  • 30.

    Capellán-Pérez, I., de Castro, C. & Miguel González, L. J. Dynamic energy return on energy investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev. 26, 100399 (2019).


    Google Scholar
     

  • 31.

    Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).


    Google Scholar
     

  • 32.

    Piñero, P., Heikkinen, M., Mäenpää, I. & Pongrácz, E. Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland. Ecol. Econ. 119, 217–229 (2015).

  • 33.

    de Koning, A. et al. Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecol. Econ. 116, 289–299 (2015).

  • 34.

    Kovanda, J., Weinzettel, J. & Schoer, K. What makes the difference in raw material equivalents calculation through environmentally extended input–output analysis? Ecol. Econ. 149, 80–87 (2018).


    Google Scholar
     

  • 35.

    Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: implications for resource efficiency. J. Ind. Ecol. 22, 553–564 (2018).


    Google Scholar
     

  • 36.

    Cibulka, S. & Giljum, S. Towards a comprehensive framework of the relationships between resource footprints, quality of life, and economic development. Sustainability https://doi.org/10.3390/su12114734 (2020).

  • 37.

    Zheng, X., Wang, R., Wood, R., Wang, C. & Hertwich, E. G. High sensitivity of metal footprint to national GDP in part explained by capital formation. Nat. Geosci. 11, 269–273 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Links Between Business Accounting and National Accounting (UNSD, 2000).

  • 39.

    Bringezu, S. et al. Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8, 778 (2016).


    Google Scholar
     

  • 40.

    European Parliament Resolution of 10 February 2021 on the New Circular Economy Action Plan 2020/2077(INI) (European Parliament, 2021).

  • 41.

    Ekvall, T., Hirschnitz-Garbers, M., Eboli, F. & Śniegocki, A. A systemic and systematic approach to the development of a policy mix for material resource efficiency. Sustainability 8, 373 (2016).


    Google Scholar
     

  • 42.

    Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. J. Environ. Res. Lett. 15, 093001 (2020).

    CAS 

    Google Scholar
     

  • 43.

    Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2, 361–369 (2017).


    Google Scholar
     

  • 44.

    Bolea, L., Duarte, R. & Sanchez-Choliz, J. Exploring carbon emissions and international inequality in a globalized world: a multiregional-multisectoral perspective. Resour. Conserv. Recycl. 152, 104516 (2020).


    Google Scholar
     

  • 45.

    Wang, H. & Zhou, P. Assessing global CO2 emission inequality from consumption perspective: an index decomposition analysis. J. Ecol. Econ. 154, 257–271 (2018).


    Google Scholar
     

  • 46.

    Leontief, W. Input–Output Economics (Oxford Univ. Press, 1966).

  • 47.

    Leontief, W. in Studies in the Structure of the American Economy (eds Leontief, W. et al.) 93–115 (Oxford Univ. Press, 1953).

  • 48.

    Leontief, W. W. & Strout, A. A. in Structural Interdependence and Economic Development (ed. Barna, T.) 119–149 (Macmillan, 1963).

  • 49.

    Isard, W. Interregional and regional input–output analysis, a model of a space economy. Rev. Econ. Stat. 33, 318–328 (1951).


    Google Scholar
     

  • 50.

    Leontief, W. Structure of the world economy: outline of a simple input–output formulation. Am. Econ. Rev. 64, 823–834 (1974).


    Google Scholar
     

  • 51.

    Tukker, A. & Dietzenbacher, E. Global multiregional input–output frameworks: an introduction and outlook. Econ. Syst. Res. 25, 1–19 (2013).


    Google Scholar
     

  • 52.

    Murray, J. & Lenzen, M. The Sustainability Practitioner’s Guide to Multi-Regional Input–Output Analysis (Common Ground, 2013).

  • 53.

    Kanemoto, K. & Murray, J. in The Sustainability Practitioner’s Guide to Input-Output Analysis (eds Murray, J. & Wood, R.) 167–178 (Common Ground, 2010).

  • 54.

    Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption and international trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS 

    Google Scholar
     

  • 55.

    Leontief, W. & Ford, D. Environmental repercussions and the economic structure: an input–output approach. Rev. Econ. Stat. 52, 262–271 (1970).


    Google Scholar
     

  • 56.

    Isard, W. et al. On the linkage of socio-economic and ecologic systems. Pap. Reg. Sci. Assoc. 21, 79–99 (1967).


    Google Scholar
     

  • 57.

    SDG Indicators: Metadata Repository (UNSD, 2018); https://unstats.un.org/sdgs/metadata/

  • 58.

    Material Footprint, Material Footprint per Capita, and Material Footprint per GDP Indicator 8.4.1 (UNSD, 2018); https://unstats.un.org/sdgs/metadata/files/Metadata-08-04-01.pdf

  • 59.

    Material Footprint, Material Footprint per Capita, and Material Footprint per GDP Indicator 12.2.1 (UNSD, 2018); https://unstats.un.org/sdgs/metadata/files/Metadata-12-02-01.pdf

  • 60.

    System of Environmental-Economic Accounting 2012: Applications and Extensions (United Nations, 2017); https://seea.un.org/sites/seea.un.org/files/ae_final_en.pdf

  • 61.

    System of Environmental-Economic Accounting 2012: Applications and Extensions; 85–87 (United Nations, 2017); https://seea.un.org/sites/seea.un.org/files/ae_final_en.pdf

  • 62.

    System of Environmental-Economic Accounting 2012: Applications and Extensions; 45–59 (United Nations, 2017); https://seea.un.org/sites/seea.un.org/files/ae_final_en.pdf

  • 63.

    Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).


    Google Scholar
     

  • 64.

    Global Material Flows Database Version 2021 (UN IRP, 2021).

  • 65.

    Geschke, A. & Hadjikakou, M. Virtual laboratories and MRIO analysis—an introduction. Econ. Syst. Res. 29, 143–157 (2017).


    Google Scholar
     

  • 66.

    Lenzen, M. et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).


    Google Scholar
     

  • 67.

    Lenzen, M. et al. New multi-regional input–output databases for Australia—enabling timely and flexible regional analysis. Econ. Syst. Res. 29, 275–295 (2017).


    Google Scholar
     

  • 68.

    Wiedmann, T. An input–output virtual laboratory in practice—survey of uptake, usage and applications of the first operational IELab. Econ. Syst. Res. 29, 296–312 (2017).


    Google Scholar
     

  • 69.

    Global Material Flows and Resource Productivity: Assessment Report for the UNEP International Resource Panel (UNEP, 2016).

  • 70.

    Technical Annex for Global Material Flows Database (UN IRP, 2018); http://www.csiro.au/~/media/LWF/Files/CES-Material-Flows_db/Technical-annex-for-Global-Material-Flows-Database.pdf

  • 71.

    Inomata, S. & Owen, A. Comparative evaluation of MRIO databases. Econ. Syst. Res. 26, 239–244 (2014).


    Google Scholar
     

  • 72.

    Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE, and OpenEU’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).


    Google Scholar
     

  • 73.

    Lenzen, M. et al. The carbon footprint of global tourism. Nat. Clim. Change 8, 522–528 (2018).


    Google Scholar
     

  • Related posts

    McLean County mourns the loss of EMA Director Bob Clark

    scceu

    Global Retail Sourcing and Procurement Market 2020 By Global Industry Size, Price Analysis, Supply Chain Analysis, Production, Consumption, Supplier, Cost Structure Market Analysis Forecast To 2026

    scceu

    Highlights From Last Week’s Activist Investor Activity

    scceu